Skip to main content
Log in

Influences of Co2+ doping on Ba3(VO4)2 ceramic with low dielectric constant, low sintering temperature, high Q*f and positive τf

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric properties and sintering behavior of cobalt-doped Ba3(VO4)2 microwave dielectric ceramic prepared by the traditional solid-state reaction method were systematic researched. The phase structure and grain morphology of the ceramics were studied by XRD and SEM analysis. Densification temperature of cobalt-doped Ba3(VO4)2 was successfully decreased from 1100 to 925 °C. The second-phase Ba2V2O7 was formed as x = 0.05, and the second phase gradually increased as x increased. Electro-magnetic testing results show that the dielectric constant and bulk density were gradually falling with x increased, the Q*f value of ceramic has been improved, and the peak of Q*f obtained is x = 0.3 sintered at 925 °C. The optimal dielectric properties are εr = 13.2, Q*f = 54,063 GHz at 10.6 GHz and τf = + 18.7 ppm/°C, sintered at 925 °C, which may be widely used in adjustment of τf for LTCC ceramics with negative τf while maintaining excellent performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Peng, H. Su, Y. Li, Y. Lu, C. Yu, L. Shi, D. Chen, B. Liao, Microstructure and microwave dielectric properties of Ni doped zinc borate ceramics for LTCC applications. J. Alloys Compd. 868, 159006 (2021)

    Article  CAS  Google Scholar 

  2. Y. Li, D. Wu, Q. Xue, B. Hu, Miniaturized single-ended and balanced dual-band diplexers using dielectric resonators. IEEE T. Microw. Theory 68(10), 4257 (2020)

    Article  Google Scholar 

  3. Y. Chul Lee, C. Soon Park, LTCC stripline resonator using embedded air cavities for millimeter wave applications. Microw. Opt. Technol. Lett. 50(3), 658 (2008)

    Article  Google Scholar 

  4. R. Peng, Y. Li, H. Su, Y. Lu, L. Shi, G. Yu, G. Wang, G. Gan, C. Yu, Three-phase borate solid solution with low sintering temperature, high-quality factor, and low dielectric constant. J. Am. Ceram. Soc. 104(7), 3303 (2021)

    Article  CAS  Google Scholar 

  5. H.H. Guo, M.S. Fu, D. Zhou, C. Du, P.J. Wang, L.X. Pang, W.F. Liu, A.S.B. Sombra, J.Z. Su, Design of a high-efficiency and -gain antenna using novel low-loss, temperature-stable Li2Ti1 – x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Appl. Mater. Interfaces 13(1), 912–923 (2021)

    Article  CAS  Google Scholar 

  6. H.-H. Guo, D. Zhou, C. Du, P.-J. Wang, W.-F. Liu, L.-X. Pang, Q.-P. Wang, J.-Z. Su, C. Singh, S. Trukhanov, Temperature stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C 8(14), 4690–4700 (2020)

    Article  CAS  Google Scholar 

  7. G. Yao, C. Pei, P. Liu, J. Zhou, H. Zhang, Microwave dielectric properties of low temperature sintering Ca5Mn4(VO4)6 ceramics. J. Mater. Sci. Mater. Electron. 27(7), 7292 (2016)

    Article  CAS  Google Scholar 

  8. R. Peng, Y. Li, X. Tang, Y. Lu, Q. Zhang, X. Wang, H. Su, Improved sintering and microwave dielectric properties of Li2CaSiO4 ceramic with magnesium atom substitution. Ceram. Int. 46(7), 8869 (2020)

    Article  CAS  Google Scholar 

  9. J. Bangali, S. Rane, G. Phatak, S. Gangal, Effect of ink organics on cambering of an Ag-metallized low temperature co-fired ceramics (LTCC). J. Mater. Sci. Mater. Electron. 20(5), 455 (2008)

    Article  Google Scholar 

  10. R. Peng, H. Su, D. An, Y. Lu, Z. Tao, D. Chen, L. Shi, Y. Li, The sintering and dielectric properties modification of Li2MgSiO4 ceramic with Ni2+ ion doping based on calculation and experiment. J. Mater. Res. Technol. 9(2), 1344 (2020)

    Article  CAS  Google Scholar 

  11. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, A. Yokoi, Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. J. Eur. Ceram. Soc. 25(12), 2865 (2005)

    Article  CAS  Google Scholar 

  12. H. Zhuang, Z. Yue, S. Meng, F. Zhao, L. Li, Low-temperature sintering and microwave dielectric properties of Ba3(VO4)2-BaWO4 ceramic composites. J. Am. Ceram. Soc. 91(11), 3738 (2008)

    Article  CAS  Google Scholar 

  13. J. Zhou, N. Xu, Q. Zhang, D. Zhou, X. Tang, H. Yang, Low-temperature densification of Mg2SnO4 ceramics with LiF-Fe2O3-V2O5 additive. Mater. Lett. 139, 169 (2015)

    Article  CAS  Google Scholar 

  14. Z. Fu, P. Liu, J. Ma, X. Zhao, H. Zhang, Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). J. Eur. Ceram. Soc. 36(3), 625 (2016)

    Article  CAS  Google Scholar 

  15. P. Liu, G.G. Yao, X.B. Bian, H.W. Zhang, Low-temperature sintering and microwave dielectric properties of Mg4Nb2O9 ceramics. J. Electroceram. 21(1–4), 149 (2007)

    Google Scholar 

  16. S. Chang, H. Pai, C. Tseng, C. Tsai, Microwave dielectric properties of ultra-low temperature fired Li3BO3 ceramics. J. Alloys Compd. 698, 814 (2017)

    Article  CAS  Google Scholar 

  17. V. Chaware, R. Deshmukh, C. Sarode, S. Gokhale, G. Phatak, Low-temperature sintering and microwave dielectric properties of Zn2SiO4 ceramic added with crystalline zinc borate. J. Electron. Mater. 44(7), 2312 (2015)

    Article  CAS  Google Scholar 

  18. K. Feng, M. Chu, C. Ku, P. Chen, C. Tu, C. Chen, R. Chien, Y. Iizuka, Ag-diffusion inhibition mechanism in SiO2-added glass-ceramics for 5G antenna applications. Ceram. Int. 46(15), 24083 (2020)

    Article  CAS  Google Scholar 

  19. Z. Weng, C. Song, Z. Xiong, H. Xue, W. Sun, Y. Zhang, B. Yang, M. Reece, H. Yan, Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano-sized TiO2 addition. Ceram. Int. 45(10), 13251 (2019)

    Article  CAS  Google Scholar 

  20. C. Tseng, P. Tsai, Microwave dielectric properties of (1 – x)ZnAl2O4–xCaTiO3 compound ceramic with controlled temperature coefficient. Ceram. Int. 39(1), 75 (2013)

    Article  CAS  Google Scholar 

  21. C. Zhang, H. Qiu, Z. Xiong, Low-temperature sintering of Ba5(Nb1 – xVx)4O15 ceramics with H3BO3. Key Eng. Mater. 132, 368–372 (2008)

    Google Scholar 

  22. H. Zhuang, Z. Yue, F. Zhao, J. Pei, G. Yang, L. Li, Effects of W,Ti co-doping on the microstructure and microwave dielectric properties of Ba5Nb4O15 ceramics. Jpn. J. Appl. Phys. 47(6), 4658 (2008)

    Article  CAS  Google Scholar 

  23. R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, A. Kan, Low-temperature sintering-microwave dielectric property relations in Ba3(VO4)2 ceramic. J. Alloys Compd. 424(1–2), 388 (2006)

    Article  CAS  Google Scholar 

  24. K. Cheng, C. Li, C. Yin, Y. Tang, Y. Sun, L. Fang, Effects of Sr2+ substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of Ba3 – xSrx(VO4)2 solid solutions. J. Eur. Ceram. Soc. 39(13), 3738 (2019)

    Article  CAS  Google Scholar 

  25. R. Peng, Y. Li, H. Su, Y. Lu, Y. Yun, Q. Zhang, S. Zhang, Effect of cobalt-doping on the dielectric properties and densification temperature of Li2MgSiO4 ceramic: calculation and experiment. J. Alloys Compd. 827, 154162 (2020)

    Article  CAS  Google Scholar 

  26. Y. Chen, Dielectric properties and crystal structure of Mg2TiO4 ceramics substituting Mg2+ with Zn2+ and Co2+. J. Alloys Compd. 513, 481 (2012)

    Article  CAS  Google Scholar 

  27. C. Zhang, R. Zuo, Temperature-stable and high Q composite ceramics in low-temperature sinterable BaO–V2O5 binary system. J. Alloys Compd. 622, 362 (2015)

    Article  CAS  Google Scholar 

  28. M. Joung, J. Kim, M. Song, S. Nahm, J. Paik, Low-temperature sintering and microwave dielectric properties of the Li2CO3-added Ba2V2O7 ceramics. J. Am. Ceram. Soc. 93(4), 934 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sichuan Science and Technology Program (Grant No. 2021JDTD0026), Jiangxi Innovative Talent Program, and Jiangxi Guochuang & UESTC Joint R & D Center Program (Grant No. H04W190371).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanxun Li or Weiwei Ling.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, Y., Peng, R. et al. Influences of Co2+ doping on Ba3(VO4)2 ceramic with low dielectric constant, low sintering temperature, high Q*f and positive τf. J Mater Sci: Mater Electron 32, 19511–19518 (2021). https://doi.org/10.1007/s10854-021-06469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06469-2

Navigation