Skip to main content
Log in

A novel, effective and low cost catalyst for formaldehyde electrooxidation based on nickel ions dispersed onto chitosan-modified carbon paste electrode for fuel cell

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this study, a novel modified carbon paste electrode (CPE) was fabricated by chitosan and then Ni2+ ions incorporated to this electrode by immersion of the modified electrode in a 0.5 M nickel chloride solution. The values of charge-transfer rate constant and electrode surface coverage for Ni(II)/Ni(III) redox couple and redox sites of modified carbon paste electrode (Ni-CHIT/CPE) were found to be 0.174 s−1 and 7.38 × 10−8 mol cm−2, respectively. The electrochemical behavior of the Ni-CHIT/CPE electrode towards oxidation of formaldehyde was evaluated by cyclic voltammetry technique as well as chronoamperometry method. It has been observed that chitosan at the surface of CPE can improve catalytic efficiency of the dispersed nickel ions toward oxidation of formaldehyde. The values of electron transfer coefficient, diffusion coefficient and the mean value of catalytic rate constant for formaldehyde and redox sites were obtained to be 0.47, 2.68 × 10−6 cm2 s−1 and 2.06 × 105 cm3 mol−1 s−1, respectively. Obtained results from cyclic voltammetry and chronoamperometric techniques specified that the electrode reaction is a diffusion-controlled process. The good catalytic activity, high sensitivity, good stability and easy in preparation rendered the Ni-CHIT/CPE to be a capable electrode for electrooxidation of formaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.F. Mai, C.H. Shue, Y.C. Yang, L.Y.O. Yang, S.L. Yau, K. Itaya, Langmuir 21, 4964 (2005)

    Article  Google Scholar 

  2. G. Samjeske, A. Miki, M. Osawa, M. Osawa, J. Phys. Chem. C 111, 15074 (2007)

    Article  Google Scholar 

  3. M. Santos, L. Bulhoes, Electrochim. Acta 49, 1893 (2004)

    Article  Google Scholar 

  4. A. Miki, S. Ye, T. Senzaki, M. Osawa, J. Electroanal. Chem. 563, 23 (2004)

    Article  Google Scholar 

  5. R.D. Lima, M. Massafera, E. Batista, T. Iwasita, J. Electroanal. Chem. 603, 142 (2007)

    Article  Google Scholar 

  6. Z. Wang, Z.Z. Zhu, J. Shi, H.L. Li, Appl. Surf. Sci. 253, 8811 (2007)

    Article  Google Scholar 

  7. C. Jiang, H. Chen, C. Yu, S. Zhang, B. Liu, J. Kong, Electrochim. Acta 54, 1134 (2009)

    Article  Google Scholar 

  8. B. Habibi, N. Delnavaz, Int. J. Hydrogen Energy 35, 8831 (2010)

    Article  Google Scholar 

  9. M. Li, W. Wang, C. Ma, W. Zhu, J. Electroanal. Chem. 661, 317 (2011)

    Article  Google Scholar 

  10. R. Ojani, J.B. Raoof, Y. Ahmady-Khanghah, S. Safshekan, Int. J. Hydrogen Energy 38, 5457 (2012)

    Article  Google Scholar 

  11. K. Brunelli, M. Dabala, M. Magrini, J. Appl. Electrochem. 32, 145 (2002)

    Article  Google Scholar 

  12. A. Vaskelis, R. Tarozaite, A. Jagminiene, L.T. Tamasiunaite, R. Juskenas, M. Kurtinaitiene, Electrochim. Acta 53, 407 (2007)

    Article  Google Scholar 

  13. A. Safavi, N. Maleki, F. Farjami, E. Farjami, J. Electroanal. Chem. 626, 75 (2009)

    Article  Google Scholar 

  14. Z.Z. Zhu, Z. Wang, H.L. Li, J. Power Sources 186, 339 (2009)

    Article  Google Scholar 

  15. Q. Yi, F. Niu, W. Yu, Thin Solid Films 519, 3155 (2011)

    Article  Google Scholar 

  16. A.A. Aal, H.B. Hassan, M.A. Rahim, J. Electroanal. Chem. 619–620, 17 (2008)

    Google Scholar 

  17. R. Ojani, J.B. Raoof, S.R.H. Zavvarmahalleh, J. Solid State Electrochem. 13, 1605 (2009)

    Article  Google Scholar 

  18. J.B. Raoof, R. Ojani, S. Abdi, S.R. Hosseini, Int. J. Hydrogen Energy 37, 2137 (2012)

    Article  Google Scholar 

  19. J.B. Raoof, A. Omrani, R. Ojani, F. Monfared, J. Electroanal. Chem. 633, 153 (2009)

    Article  Google Scholar 

  20. M. Enyo, J. Electroanal. Chem. 201, 47 (1986)

    Article  Google Scholar 

  21. A. Samadi-Maybodi, S.K.H. Nejad-Darzi, M.R. Ganjali, H. Ilkhani, J. Solid State Electrochem. 17, 2043 (2013)

    Article  Google Scholar 

  22. C.A. Lee, Y.C. Tsai, Sensors Actuators B Chem. 138, 518 (2009)

    Article  Google Scholar 

  23. J. Berger, M. Reist, J.M. Mayer, O. Felt, N.A. Peppas, R. Gurny, Eur. J. Pharm. Biopharm. 57, 19 (2004)

    Article  Google Scholar 

  24. M. Noroozifar, M. Khorasani-Motlagh, M.S. Ekrami-Kakhki, R. Khaleghian-Moghadam, J. Appl. Electrochem. 44, 233 (2014)

    Article  Google Scholar 

  25. A. Babaei, M. Afrasiabi, M. Babazadeh, Electroanalysis 22, 1743 (2010)

    Article  Google Scholar 

  26. A. Curulli, G.D. Carlo, G.M. Ingo, C. Riccucci, D. Zane, C. Bianchini, Electroanalysis 24, 897 (2012)

    Article  Google Scholar 

  27. C. Lau, G. Martin, S.D. Minteer, M.J. Cooney, Electroanalysis 22, 793 (2010)

    Article  Google Scholar 

  28. G. Yildiz, Z. Aydogmus, J.M. Kauffmann, Electroanalysis 25, 1796 (2013)

    Article  Google Scholar 

  29. C.B. Jacobs, M.J. Peairs, B.J. Venton, Anal. Chim. Acta. 662, 105 (2010)

    Article  Google Scholar 

  30. W. Lian, S. Liu, J. Yu, X. Xing, J. Li, M. Cui, J. Huang, Biosens. Bioelectron. 38, 163 (2012)

    Article  Google Scholar 

  31. X.Q. Cui, C.M. Li, J.F. Zang, S.C. Yu, Biosens. Bioelectron. 22, 3288 (2007)

    Article  Google Scholar 

  32. F. Qu, M. Yang, G. Shen, R. Yu, Biosens. Bioelectron. 22, 1749 (2007)

    Article  Google Scholar 

  33. Y.C. Tsai, S.Y. Chen, C.A. Lee, Sensors Actuators B Chem. 135, 96 (2008)

    Article  Google Scholar 

  34. L. Wang, Y. Zheng, X. Lu, Z. Li, L. Sun, Y. Song, Sensors Actuators B Chem. 195, 1 (2014)

    Article  Google Scholar 

  35. Q. Wang, Y. Wang, S. Liu, L. Wang, F. Gao, F. Gao, W. Sun, Thin Solid Films 520, 4459 (2012)

    Article  Google Scholar 

  36. Y. Guo, X. Sun, Y. Liu, W. Wang, H. Qiu, J. Gao, Carbon 50, 2513 (2012)

    Article  Google Scholar 

  37. M. Srivastava, S.K. Srivastava, N.R. Nirala, R. Prakash, Anal. Methods 6, 817 (2014)

    Article  Google Scholar 

  38. Q. Wang, J. Zheng, H. Zhang, J. Electroanal. Chem. 674, 1 (2012)

    Article  Google Scholar 

  39. M. Monier, Int. J. Biol. Macromol. 50, 773 (2012)

    Article  Google Scholar 

  40. M. Noroozifar, M. Khorasani-Motlagh, M.S. Ekrami-Kakhki, R. Khaleghian-Moghadam, J. Power Sources 248, 130 (2014)

    Article  Google Scholar 

  41. S.K. Hassaninejad–Darzi, M. Rahimnejad, J. Iran. Chem. Soc. 11, 1047 (2014)

    Article  Google Scholar 

  42. H. Gharibi, K. Kakaei, M. Zhiani, J. Phys. Chem. C 114, 5233 (2010)

    Article  Google Scholar 

  43. M. Fleischmann, K. Korinek, D. Pletcher, J. Electroanal. Chem. 31, 39 (1971)

    Article  Google Scholar 

  44. K. Nagashree, M. Ahmed, J. Solid State Electrochem. 14, 2307 (2010)

    Article  Google Scholar 

  45. E. Laviron, J. Electroanal. Chem. 101, 19 (1979)

    Article  Google Scholar 

  46. H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, Anal. Chem. 73, 915 (2001)

    Article  Google Scholar 

  47. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley-Interscience, New York, 2001)

    Google Scholar 

  48. S.N. Azizi, S. Ghasemi, H. Yazdani-Sheldarrei, Int. J. Hydrogen Energy 38, 12774 (2013)

    Article  Google Scholar 

  49. J. Taraszewska, G. Rosłonek, J. Electroanal. Chem. 364, 209 (1994)

    Article  Google Scholar 

  50. M. Koper, M. Hachkar, B. Beden, J. Chem. Soc. Faraday Trans. 92, 3975 (1996)

    Article  Google Scholar 

  51. A. Ciszewski, G. Milczarek, J. Electroanal. Chem. 469, 18 (1999)

    Article  Google Scholar 

  52. C. Zhao, M. Li, K. Jiao, J. Anal. Chem. 61, 1204 (2006)

    Article  Google Scholar 

  53. R. Ojani, J.B. Raoof, S. Safshekan, J. Appl. Electrochem. 42, 81 (2012)

    Article  Google Scholar 

  54. Y. Xin, L. Guanghan, W. Xiaogang, Z. Tong, Electroanalysis 13, 923 (2001)

    Article  Google Scholar 

  55. B.C. Janegitz, L.C.S. Figueiredo-Filho, L.H. Marcolino-Junior, S.P.N. Souza, E.R. Pereira-Filho, O. Fatibello-Filho, J. Electroanal. Chem. 660, 209 (2011)

    Article  Google Scholar 

  56. A. Velazquez-Palenzuela, F. Centellas, J.A. Garrido, C. Arias, R.M. Rodriguez, E. Brillas, P.L. Cabot, J. Power Sources 196, 3503 (2011)

    Article  Google Scholar 

  57. D.K.J. Gosser, Cyclic voltammetry-simulation and analysis of reaction mechanism (Wiley-VCH, New York, USA, 1993)

    Google Scholar 

  58. R.S. Nicholson, I. Shain, Anal. Chem. 36, 706 (1964)

    Article  Google Scholar 

  59. R. Ojani, J.B. Raoof, S. Zamani, Bioelectrochemistry 85, 44 (2012)

    Article  Google Scholar 

  60. A.A. El-Shafei, J. Electroanal. Chem. 471, 89 (1999)

    Article  Google Scholar 

  61. R. Greef, R. Peat, L.M. Peter, D. Pletcher, J. Robinson, Instrumental methods in electrochemistry (Ellis Horwood, Chichster, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Karim Hassaninejad–Darzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassaninejad–Darzi, S.K. A novel, effective and low cost catalyst for formaldehyde electrooxidation based on nickel ions dispersed onto chitosan-modified carbon paste electrode for fuel cell. J Electroceram 33, 252–263 (2014). https://doi.org/10.1007/s10832-014-9966-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9966-5

Keywords

Navigation