Skip to main content
Log in

Electrochemical Carbon Dioxide Reduction in Acidic Media

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The electrochemical reduction of carbon dioxide (CO2RR) stands as an enticing approach for the production of essential chemicals and feedstocks, storing clean electric energy and mitigating greenhouse gas emissions. Recent years have witnessed remarkable breakthroughs in CO2RR, enhancing its performance and transitioning related research from laboratory settings toward industrial realization. However, the journey of CO2RR development is not devoid of challenges, including issues like mass transfer limitation, salt accumulation, and flooding phenomena. Remarkably, recent studies have unveiled a promising avenue by conducting CO2RR in an acidic environment, effectively circumventing these challenges and presenting novel opportunities. In this review, we embark on a reassessment of H-cells and flow cells, delving into their opportunities, challenges, strengths, and weaknesses. Additionally, we compile recent advancements in CO2RR under acidic conditions, elucidating the performance metrics and strategies embraced by pertinent research. Subsequently, we propose three pivotal concerns in acidic CO2RR: ① balancing the competition between CO2RR and hydrogen evolution reaction (HER), ② enhancing the selectivity, and ③ exploring industrial applications. And finally, we delve into the core factors influencing the performance of CO2RR in acid: local pH, cation effects, and catalyst design. Building upon these strategies, challenges, and insights, prospects are proposed for the future trajectory of CO2RR development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [15]. Copyright © 2018, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [23]. Copyright © 2022, The Author(s), under exclusive license to Springer Nature Limited. c Cost breakdown of an alkaline CO2RR flow cell based on technoeconomic analysis. Reproduced with permission from Ref. [11]. Copyright © 2021, The American Association for the Advancement of Science

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Reproduced with permission from Ref. [91]. Copyright © 1997, American Chemical Society

Fig. 8

Reproduced with permission from Ref. [94]. Copyright © 2015 American Chemical Society

Fig. 9

Reproduced from Ref. [77]. Copyright (2023), with permission from Royal Society of Chemistry. b Scheme of the BPM-based electrolyzer. “Acidic Electroreduction of CO2 to Multi-Carbon Products with CO2 Recovery and Recycling from Carbonate” by Perazio et al. under CC-BY 4.0 c Schematic of CO2RR in the porous solid electrolyte (PSE) reactor and recovery process of crossover CO32− ions by recombination with protons in the PSE buffer layer. The protons generated from the anode side move across the PEM and then hop across the solid electrolyte efficiently via sulfonate functional groups as shown with the yellow arrows. Reproduced from Ref. [95]. Copyright © 2022, The Author(s), under exclusive licence to Springer Nature Limited

Fig. 10

Reproduced with permission from Ref. [97]. Copyright 2011, IOP Publishing

Fig. 11

Reproduced with permission from Ref. [11]. Copyright © 2021, The American Association for the Advancement of Science c and d Modelled pH changes along the catalyst surface in solution at different pH values under an applied current density of 500 mA cm−2 (c) and surface pH at varying applied current density (j) and bulk pH (d). e and f Concentration profile of CO2 under different solution pH values (e) and carbonate fraction in solution at pH = 2.0 under an applied current density of 500 mA cm−2 (f). The carbonate fraction is calculated by the ratio between carbonate (CO32−)/bicarbonate (HCO3) and the sum of carbon species (HCO3, CO32−, CO2, aq). CO2, aq is the concentration of dissolved CO2. Reproduced with permission from Ref. [21]. Copyright © 2022, The Author(s), under exclusive licence to Springer Nature Limited

Fig. 12
Fig. 13

Reproduced with permission from Ref. [113]. Copyright © 2016, American Chemical Society

Fig. 14

Reproduced with permission from Ref. [23]. Copyright © 2022, The Author(s), under exclusive license to Springer Nature Limited. c Diagram of the Stern layer electric field at the electrode surface. d Diagram of the Onsager reaction field in bulk solution. The black circle represents the carbon atom in carbon monoxide, while the red circle represents the oxygen atom. e Diagram of the total field at the electrode surface, with contributions from both the Onsager reaction field and the Stern layer electric field. f Calculation of the Stern layer electric field by referencing the CO frequency under each potential to the extrapolated frequency at the PZC. g Calculation of the Onsager reaction field by referencing the extrapolated frequency at the PZC to the frequency of CO adsorbed on Au in vacuum. h Calculation of the total field by referencing the CO frequency under each potential to the frequency of CO adsorbed on Au in vacuum [118]. ch, “The Solvation-Induced Onsager Reaction Field Rather than the Double-Layer Field Controls CO2 Reduction on Gold” by Zhu et al. is licensed under CC BY-NC-ND 4.0

Fig. 15

Reproduced with permission from Ref. [84]. Copyright © 2023 Wiley–VCH GmbH. f Raman spectra of EC-Cu after different electrodeposition time periods. “Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions”by Cao et al. under CC-BY 4.0

Fig. 16

Reproduced with permission from Ref. [21]. Copyright © 2022, The Author(s), under exclusive license to Springer Nature Limited. c Energy-global-optimisation scheme. The red, blue, and black paths show different reaction channels, where rA, rB, rC refer to the limiting step in relevant paths in Ref. [82]. d Screening of CO adsorption energies on Cu-based binary active sites. CuMCu and CuMM refer to the bridge sites for the adsorbate binding between two Cu atoms, and Cu and M atoms, where M is the first neighbour atom of Cu. The yellow band shows the expected promising activities. e Reaction phase diagram for CO2RR to C2+ at − 0.6 VRHE. The dashed lines (red, C–C coupling steps; blue, protonation steps) indicate the reaction free energies for all considered elementary steps. The solid lines indicate the GRPD-limiting steps and energies. The points (a triangle and circles) show the limiting energies calculated as the maximum of the reaction energy of R1 and R5 in Ref. [82]. The black-filled triangle and red-filled circle refer to the reaction energy for Cu211 and CuZnZn (the most promising site). The subscript indicates the adsorption site. Reproduced with permission from Ref. [82]. Copyright © 2023, The Author(s), under exclusive licence to Springer Nature Limited

Fig. 17

Reproduced with permission from Ref. [76]. Copyright © 2022 Wiley‐VCH GmbH. b Schematic illustration of ionic environment and transport near the catalyst surface functionalized by the PFSA ionomer. Reproduced with permission from Ref. [11]. Copyright © 2021, The American Association for the Advancement of Science. c Schematic illustration of the in situ confinement effect on OH for the carbon layer. Reproduced with permission from Ref. [88]. Copyright © 2023 American Chemical Society. d Schematics of interfacial reactions and proton transport near catalyst surface. Reproduced with permission from Ref. [87]. Copyright © 2023, The Author(s), under exclusive license to Springer Nature Limited

Similar content being viewed by others

References

  1. De Luna, P., Hahn, C., Higgins, D., et al.: What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019). https://doi.org/10.1126/science.aav3506

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Lewis, N.S., Nocera, D.G.: Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103, 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Zhang, S.M., Chen, M.H., Zhao, X., et al.: Advanced noncarbon materials as catalyst supports and non-noble electrocatalysts for fuel cells and metal-air batteries. Electrochem. Energy Rev. 4, 336–381 (2021). https://doi.org/10.1007/s41918-020-00085-0

    Article  CAS  Google Scholar 

  4. Rockström, J., Gaffney, O., Rogelj, J., et al.: A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017). https://doi.org/10.1126/science.aah3443

    Article  PubMed  ADS  Google Scholar 

  5. Liu, Z., Deng, Z., He, G., et al.: Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155 (2021). https://doi.org/10.1038/s43017-021-00244-x

    Article  ADS  Google Scholar 

  6. Kätelhön, A., Meys, R., Deutz, S., et al.: Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl. Acad. Sci. U. S. A. 116, 11187–11194 (2019). https://doi.org/10.1073/pnas.1821029116

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Meys, R., Kätelhön, A., Bachmann, M., et al.: Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 374, 71–76 (2021). https://doi.org/10.1126/science.abg9853

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Kou, Z.K., Li, X., Wang, T.T., et al.: Fundamentals, on-going advances and challenges of electrochemical carbon dioxide reduction. Electrochem. Energy Rev. 5, 82–111 (2022). https://doi.org/10.1007/s41918-021-00096-

    Article  CAS  Google Scholar 

  9. Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., et al.: Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016). https://doi.org/10.1021/acs.chemrev.6b00173

    Article  CAS  PubMed  Google Scholar 

  10. Nitopi, S., Bertheussen, E., Scott, S.B., et al.: Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705

    Article  CAS  PubMed  Google Scholar 

  11. Huang, J.E., Li, F., Ozden, A., et al.: CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021). https://doi.org/10.1126/science.abg6582

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Jordaan, S.M., Wang, C.: Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat. Catal. 4, 915–920 (2021). https://doi.org/10.1038/s41929-021-00704-z

    Article  Google Scholar 

  13. Li, J., Yu, T., Miao, D.Y., et al.: Carbon dioxide hydrogenation to light olefins over ZnO-Y2O3 and SAPO-34 bifunctional catalysts. Catal. Commun. 129, 105711 (2019). https://doi.org/10.1016/j.catcom.2019.105711

    Article  CAS  Google Scholar 

  14. Li, L., Li, X.D., Sun, Y.F., et al.: Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 51, 1234–1252 (2022). https://doi.org/10.1039/d1cs00893e

    Article  CAS  PubMed  Google Scholar 

  15. Weekes, D.M., Salvatore, D.A., Reyes, A., et al.: Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018). https://doi.org/10.1021/acs.accounts.8b00010

    Article  CAS  PubMed  Google Scholar 

  16. Lees, E.W., Mowbray, B.A.W., Parlane, F.G.L., et al.: Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 7, 55–64 (2021). https://doi.org/10.1038/s41578-021-00356-2

    Article  CAS  ADS  Google Scholar 

  17. Wakerley, D., Lamaison, S., Wicks, J., et al.: Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022). https://doi.org/10.1038/s41560-021-00973-9

    Article  CAS  ADS  Google Scholar 

  18. Ma, W.C., He, X.Y., Wang, W., et al.: Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 50, 12897–12914 (2021). https://doi.org/10.1039/d1cs00535a

    Article  CAS  PubMed  Google Scholar 

  19. Salvatore, D.A., Gabardo, C.M., Reyes, A., et al.: Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021). https://doi.org/10.1038/s41560-020-00761-x

    Article  CAS  ADS  Google Scholar 

  20. Yang, K.L., Kas, R., Smith, W.A., et al.: Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 6, 33–40 (2021). https://doi.org/10.1021/acsenergylett.0c02184

    Article  CAS  Google Scholar 

  21. Xie, Y., Ou, P.F., Wang, X., et al.: High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022). https://doi.org/10.1038/s41929-022-00788-1

    Article  CAS  Google Scholar 

  22. Li, J.N., Kornienko, N.: Electrocatalytic carbon dioxide reduction in acid. Chem Catal. 2, 29–38 (2022). https://doi.org/10.1016/j.checat.2021.10.016

    Article  CAS  Google Scholar 

  23. Gu, J., Liu, S., Ni, W.Y., et al.: Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022). https://doi.org/10.1038/s41929-022-00761-y

    Article  CAS  Google Scholar 

  24. Bondue, C.J., Graf, M., Goyal, A., et al.: Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 143, 279–285 (2021). https://doi.org/10.1021/jacs.0c10397

    Article  CAS  PubMed  Google Scholar 

  25. Li, G., Liu, Y., Zhang, Q., et al.: Development of catalysts and electrolyzers toward industrial-scale CO2 electroreduction. J. Mater. Chem. A 10, 19254–19277 (2022). https://doi.org/10.1039/d2ta02086f

    Article  CAS  Google Scholar 

  26. Gao, D., Wei, P., Li, H., et al.: Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys. Chim. Sin. 37, 2009021 (2021). https://doi.org/10.3866/PKU.WHXB202009021

    Article  CAS  Google Scholar 

  27. Zhang, M.D., Si, D.H., Yi, J.D., et al.: Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 16, 2005254 (2020). https://doi.org/10.1002/smll.202005254

    Article  CAS  Google Scholar 

  28. Zhang, B.H., Guo, Z.H., Zuo, Z., et al.: The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide. Appl. Catal. B Environ. 239, 441–449 (2018). https://doi.org/10.1016/j.apcatb.2018.08.044

    Article  CAS  Google Scholar 

  29. Huo, S.M., Lu, J., Wang, X.Q.: Electrodeposition of Ni on MWNTs as a promising catalyst for CO2RR. Energy Sci. Eng. 9, 1042–1047 (2021). https://doi.org/10.1002/ese3.889

    Article  CAS  Google Scholar 

  30. Jiang, J.J., Huang, B.S., Daiyan, R., et al.: Defective Sn-Zn perovskites through bio-directed routes for modulating CO2RR. Nano Energy 101, 107593 (2022). https://doi.org/10.1016/j.nanoen.2022.107593

    Article  CAS  Google Scholar 

  31. Yang, H.J., Zhang, X., Hong, Y.H., et al.: Superior selectivity and tolerance towards metal-ion impurities of a Fe/N/C catalyst for CO2 reduction. Chemsuschem 12, 3988–3995 (2019). https://doi.org/10.1002/cssc.201901330

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, N., Zhu, Z.W., Xue, W.J., et al.: Emerging electrocatalysts for water oxidation under near-neutral CO2 reduction conditions. Adv. Mater. 34, 2105852 (2022). https://doi.org/10.1002/adma.202105852

    Article  CAS  Google Scholar 

  33. Royer, M.: Réduction de l’acide carbonique en acide formique. Compt. rend 1870, 731–732 (1870)

    Google Scholar 

  34. Bagger, A., Ju, W., Varela, A.S., et al.: Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18, 3266–3273 (2017). https://doi.org/10.1002/cphc.201700736

    Article  CAS  PubMed  Google Scholar 

  35. Zhai, L.P., Yang, S., Lu, C.B., et al.: CoN5 sites constructed by anchoring Co porphyrins on vinylene-linked covalent organic frameworks for electroreduction of carbon dioxide. Small 18, 2200736 (2022). https://doi.org/10.1002/smll.202200736

    Article  CAS  Google Scholar 

  36. Wu, Q., Xie, R.K., Mao, M.J., et al.: Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett. 5, 1005–1012 (2020). https://doi.org/10.1021/acsenergylett.9b02756

    Article  CAS  Google Scholar 

  37. Yuan, J.J., Chen, S.T., Zhang, Y.Y., et al.: Structural regulation of coupled phthalocyanine-porphyrin covalent organic frameworks to highly active and selective electrocatalytic CO2 reduction. Adv. Mater. 34, 2203139 (2022). https://doi.org/10.1002/adma.202203139

    Article  CAS  Google Scholar 

  38. Hori, Y., Kikuchi, K., Suzuki, S.: Production of CO and ch4in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14, 1695–1698 (1985). https://doi.org/10.1246/cl.1985.1695

    Article  Google Scholar 

  39. Deng, B.W., Huang, M., Zhao, X.L., et al.: Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal. 12, 331–362 (2022). https://doi.org/10.1021/acscatal.1c03501

    Article  CAS  Google Scholar 

  40. Miao, R.K., Xu, Y., Ozden, A., et al.: Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule 5, 2742–2753 (2021). https://doi.org/10.1016/j.joule.2021.08.013

    Article  CAS  Google Scholar 

  41. Heenan, A.R., Hamonnet, J., Marshall, A.T.: Why careful iR compensation and reporting of electrode potentials are critical for the CO2 reduction reaction. ACS Energy Lett. 7, 2357–2361 (2022). https://doi.org/10.1021/acsenergylett.2c00800

    Article  CAS  Google Scholar 

  42. Marcandalli, G., Monteiro, M.C.O., Goyal, A., et al.: Electrolyte effects on CO2 electrochemical reduction to CO. Acc. Chem. Res. 55, 1900–1911 (2022). https://doi.org/10.1021/acs.accounts.2c00080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, S.Q., Jiang, B., Cai, W.B., et al.: Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017). https://doi.org/10.1021/jacs.7b10462

    Article  CAS  PubMed  Google Scholar 

  44. Dunwell, M., Lu, Q., Heyes, J.M., et al.: The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017). https://doi.org/10.1021/jacs.6b13287

    Article  CAS  PubMed  Google Scholar 

  45. Wuttig, A., Liu, C., Peng, Q.L., et al.: Tracking a common surface-bound intermediate during CO2-to-fuels catalysis. ACS Cent. Sci. 2, 522–528 (2016). https://doi.org/10.1021/acscentsci.6b00155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wuttig, A., Yoon, Y., Ryu, J., et al.: Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 139, 17109–17113 (2017). https://doi.org/10.1021/jacs.7b08345

    Article  CAS  PubMed  Google Scholar 

  47. Marcandalli, G., Villalba, M., Koper, M.T.M.: The importance of acid-base equilibria in bicarbonate electrolytes for CO2 electrochemical reduction and CO reoxidation studied on Au(hkl) electrodes. Langmuir 37, 5707–5716 (2021). https://doi.org/10.1021/acs.langmuir.1c00703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, F., Co, A.C.: Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem. Int. Ed. 59, 1674–1681 (2020). https://doi.org/10.1002/anie.201912637

    Article  CAS  Google Scholar 

  49. Yang, K.L., Kas, R., Smith, W.A.: In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 141, 15891–15900 (2019). https://doi.org/10.1021/jacs.9b07000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Z.S., Melo, L., Jansonius, R.P., et al.: pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 3101–3107 (2020). https://doi.org/10.1021/acsenergylett.0c01606

    Article  CAS  Google Scholar 

  51. Zhu, S.Q., Li, T.H., Cai, W.B., et al.: CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 4, 682–689 (2019). https://doi.org/10.1021/acsenergylett.8b02525

    Article  CAS  Google Scholar 

  52. Jin, S., Hao, Z.M., Zhang, K., et al.: Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Ed. 60, 20627–20648 (2021). https://doi.org/10.1002/anie.202101818

    Article  CAS  Google Scholar 

  53. Niu, Z.Z., Chi, L.P., Liu, R., et al.: Rigorous assessment of CO2 electroreduction products in a flow cell. Energy Environ. Sci. 14, 4169–4176 (2021). https://doi.org/10.1039/d1ee01664d

    Article  CAS  Google Scholar 

  54. Ma, M., Kim, S., Chorkendorff, I., et al.: Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020). https://doi.org/10.1039/d0sc03047c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, C.B., Li, Y.F., Yang, P.D.: Address the “alkalinity problem” in CO2 electrolysis with catalyst design and translation. Joule 5, 737–742 (2021). https://doi.org/10.1016/j.joule.2021.02.008

    Article  Google Scholar 

  56. Dinh, C.T., Burdyny, T., Kibria, M.G., et al.: CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018). https://doi.org/10.1126/science.aas9100

    Article  CAS  PubMed  Google Scholar 

  57. Jouny, M., Lv, J.J., Cheng, T., et al.: Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019). https://doi.org/10.1038/s41557-019-0312-z

    Article  CAS  PubMed  Google Scholar 

  58. Wang, X.L., de Araújo, J.F., Ju, W., et al.: Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu–tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019). https://doi.org/10.1038/s41565-019-0551-6

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Wen, C., Zhou, M., Liu, P., et al.: Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu–S motifs in metal–organic framework based precatalysts. Angew. Chem. Int. Ed. 61, e202111700 (2022). https://doi.org/10.1002/anie.202111700

    Article  CAS  ADS  Google Scholar 

  60. Li, H.F., Liu, T.F., Wei, P.F., et al.: High-rate CO2 electroreduction to C2+ products over a copper–copper iodide catalyst. Angew. Chem. Int. Ed. 60, 14329–14333 (2021). https://doi.org/10.1002/anie.202102657

    Article  CAS  Google Scholar 

  61. Sultan, S., Lee, H., Park, S., et al.: Interface rich CuO/Al2CuO4 surface for selective ethylene production from electrochemical CO2 conversion. Energy Environ. Sci. 15, 2397–2409 (2022). https://doi.org/10.1039/d1ee03861c

    Article  CAS  Google Scholar 

  62. Yang, Q.C., Liu, X.L., Peng, W., et al.: Vanadium oxide integrated on hierarchically nanoporous copper for efficient electroreduction of CO2 to ethanol. J. Mater. Chem. A 9, 3044–3051 (2021). https://doi.org/10.1039/d0ta09522b

    Article  CAS  Google Scholar 

  63. Gao, D.F., Arán-Ais, R.M., Jeon, H.S., et al.: Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5

    Article  CAS  Google Scholar 

  64. O’Brien, C.P., Miao, R.K., Liu, S.J., et al.: Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021). https://doi.org/10.1021/acsenergylett.1c01122

    Article  CAS  Google Scholar 

  65. Wu, Y.M., Garg, S., Li, M.R., et al.: Effects of microporous layer on electrolyte flooding in gas diffusion electrodes and selectivity of CO2 electrolysis to CO. J. Power. Sources 522, 230998 (2022). https://doi.org/10.1016/j.jpowsour.2022.230998

    Article  CAS  Google Scholar 

  66. Chen, H.H., Tao, R., Bang, K.T., et al.: Anion exchange membranes for fuel cells: state-of-the-art and perspectives. Adv. Energy Mater. 12, 202200934 (2022). https://doi.org/10.1002/aenm.202200934

    Article  CAS  Google Scholar 

  67. Das, G., Choi, J.H., Nguyen, P.K.T., et al.: Anion exchange membranes for fuel cell application: a review. Polymers 14, 1197 (2022). https://doi.org/10.3390/polym14061197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qiao, Y., Lai, W.C., Huang, K., et al.: Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid. ACS Catal. 12, 2357–2364 (2022). https://doi.org/10.1021/acscatal.1c05135

    Article  CAS  Google Scholar 

  69. Yan, T., Pan, H., Liu, Z.K., et al.: Phase-inversion induced 3D electrode for direct acidic electroreduction CO2 to formic acid. Small 19, 202207650 (2023). https://doi.org/10.1002/smll.202207650

    Article  CAS  Google Scholar 

  70. Shen, H., Jin, H., Li, H., et al.: Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun. 14, 2843 (2023). https://doi.org/10.1038/s41467-023-38497-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Li, L., Liu, Z.Y., Yu, X.H., et al.: Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem. Int. Ed. 62, e202300226 (2023). https://doi.org/10.1002/anie.202300226

    Article  CAS  ADS  Google Scholar 

  72. Wang, Y., Wang, C., Wei, Y., et al.: Efficient and selective electroreduction of CO2 to HCOOH over bismuth-based bromide perovskites in acidic electrolytes. Chem. A Eur. J. 28, e202201832 (2022). https://doi.org/10.1002/chem.202201832

    Article  CAS  Google Scholar 

  73. Monteiro, M.C.O., Philips, M.F., Schouten, K.J.P., et al.: Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nat. Commun. 12, 4943 (2021). https://doi.org/10.1038/s41467-021-24936-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  74. Li, X.Z., Zhang, P., Zhang, L.L., et al.: Confinement of an alkaline environment for electrocatalytic CO2 reduction in acidic electrolytes. Chem. Sci. 14, 5602–5607 (2023). https://doi.org/10.1039/d3sc01040f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pan, B.B., Fan, J., Zhang, J., et al.: Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly. ACS Energy Lett. 7, 4224–4231 (2022). https://doi.org/10.1021/acsenergylett.2c02292

    Article  CAS  Google Scholar 

  76. Sheng, X.D., Ge, W.X., Jiang, H.L., et al.: Engineering the Ni–N–C catalyst microenvironment enabling CO2 electroreduction with nearly 100% CO selectivity in acid. Adv. Mater. 34, 2201295 (2022). https://doi.org/10.1002/adma.202201295

    Article  CAS  Google Scholar 

  77. Li, H.F., Li, H.B., Wei, P.F., et al.: Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni–N–C catalyst in a membrane electrode assembly electrolyzer. Energy Environ. Sci. 16, 1502–1510 (2023). https://doi.org/10.1039/d2ee03482d

    Article  CAS  Google Scholar 

  78. Liu, Z.K., Yan, T., Shi, H., et al.: Acidic electrocatalytic CO2 reduction using space-confined nanoreactors. ACS Appl. Mater. Interfaces 14, 7900–7908 (2022). https://doi.org/10.1021/acsami.1c21242

    Article  CAS  PubMed  Google Scholar 

  79. Fan, Q., Bao, G.X., Chen, X.Y., et al.: Iron nanoparticles tuned to catalyze CO2 electroreduction in acidic solutions through chemical microenvironment engineering. ACS Catal. 12, 7517–7523 (2022). https://doi.org/10.1021/acscatal.2c01890

    Article  CAS  Google Scholar 

  80. Jiang, Z., Zhang, Z.S., Li, H., et al.: Molecular catalyst with near 100% selectivity for CO2 reduction in acidic electrolytes. Adv. Energy Mater. 13, 2203603 (2023). https://doi.org/10.1002/aenm.202203603

    Article  CAS  Google Scholar 

  81. Fan, M.Y., Huang, J.E., Miao, R.K., et al.: Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal. 6, 763–772 (2023). https://doi.org/10.1038/s41929-023-01003-5

    Article  CAS  Google Scholar 

  82. Zhang, J., Guo, C.X., Fang, S.S., et al.: Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. Nat. Commun. 14, 1298 (2023). https://doi.org/10.1038/s41467-023-36926-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Ma, Z.S., Yang, Z.L., Lai, W.C., et al.: CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 13, 7596 (2022). https://doi.org/10.1038/s41467-022-35415-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  84. Zi, X., Zhou, Y.J., Zhu, L., et al.: Breaking K+ concentration limit on Cu nanoneedles for acidic electrocatalytic CO2 reduction to multi-carbon products. Angew. Chem. Int. Ed. 62, e202309351 (2023). https://doi.org/10.1002/anie.202309351

    Article  CAS  Google Scholar 

  85. Cao, Y.F., Chen, Z., Li, P.H., et al.: Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions. Nat. Commun. 14, 2387 (2023). https://doi.org/10.1038/s41467-023-37898-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Nie, W.X., Heim, G.P., Watkins, N.B., et al.: Organic additive-derived films on Cu electrodes promote electrochemical CO2 reduction to C2+ products under strongly acidic conditions. Angew. Chem. Int. Ed. 62, e202216102 (2023). https://doi.org/10.1002/anie.202216102

    Article  CAS  Google Scholar 

  87. Zhao, Y., Hao, L., Ozden, A., et al.: Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth 2, 403–412 (2023). https://doi.org/10.1038/s44160-022-00234-x

    Article  ADS  Google Scholar 

  88. Wang, Z.H., Li, Y.C., Zhao, X., et al.: Localized alkaline environment via in situ electrostatic confinement for enhanced CO2-to-ethylene conversion in neutral medium. J. Am. Chem. Soc. 145, 6339–6348 (2023). https://doi.org/10.1021/jacs.2c13384

    Article  CAS  PubMed  Google Scholar 

  89. Ooka, H., Figueiredo, M.C., Koper, M.T.M.: Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017). https://doi.org/10.1021/acs.langmuir.7b00696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goyal, A., Marcandalli, G., Mints, V.A., et al.: Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 142, 4154–4161 (2020). https://doi.org/10.1021/jacs.9b10061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hori, Y., Takahashi, R., Yoshinami, Y., et al.: Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997). https://doi.org/10.1021/jp970284i

    Article  CAS  Google Scholar 

  92. Mustafa, A., Lougou, B.G., Shuai, Y., et al.: Theoretical insights into the factors affecting the electrochemical reduction of CO2. Sustain. Energy Fuels 4, 4352–4369 (2020). https://doi.org/10.1039/d0se00544d

    Article  CAS  Google Scholar 

  93. Wang, L., Nitopi, S.A., Bertheussen, E., et al.: Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018). https://doi.org/10.1021/acscatal.8b01200

    Article  CAS  Google Scholar 

  94. Xiao, H., Cheng, T., Goddard, W.A., III., et al.: Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 138, 483–486 (2016). https://doi.org/10.1021/jacs.5b11390

    Article  CAS  PubMed  Google Scholar 

  95. Kim, J.Y.T., Zhu, P., Chen, F.Y., et al.: Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal. 5, 288–299 (2022). https://doi.org/10.1038/s41929-022-00763-w

    Article  CAS  Google Scholar 

  96. Perazio, A., Creissen, C.E., Rivera de la Cruz, J.G., et al.: Acidic electroreduction of CO2 to multi-carbon products with CO2 recovery and recycling from carbonate. ACS Energy Lett. 8, 2979–2985 (2023). https://doi.org/10.1021/acsenergylett.3c00901

    Article  CAS  Google Scholar 

  97. Zosel, J., Oelßner, W., Decker, M., et al.: The measurement of dissolved and gaseous carbon dioxide concentration. Meas. Sci. Technol. 22, 072001 (2011). https://doi.org/10.1088/0957-0233/22/7/072001

    Article  CAS  ADS  Google Scholar 

  98. Monteiro, M.C.O., Mirabal, A., Jacobse, L., et al.: Time-resolved local pH measurements during CO2 reduction using scanning electrochemical microscopy: buffering and tip effects. JACS Au 1, 1915–1924 (2021). https://doi.org/10.1021/jacsau.1c00289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grozovski, V., Vesztergom, S., Láng, G.G., et al.: Electrochemical hydrogen evolution: H+ or H2O reduction? A rotating disk electrode study. J. Electrochem. Soc. 164, E3171–E3178 (2017). https://doi.org/10.1149/2.0191711jes

    Article  CAS  Google Scholar 

  100. Leung, K., Nielsen, I.M.B., Kurtz, I.: Ab Initio molecular dynamics study of carbon dioxide and bicarbonate hydration and the nucleophilic attack of hydroxide on CO2. J. Phys. Chem. B 111, 4453–4459 (2007). https://doi.org/10.1021/jp068475l

    Article  CAS  PubMed  Google Scholar 

  101. Rheinhardt, J.H., Singh, P., Tarakeshwar, P., et al.: Electrochemical capture and release of carbon dioxide. ACS Energy Lett. 2, 454–461 (2017). https://doi.org/10.1021/acsenergylett.6b00608

    Article  CAS  Google Scholar 

  102. Helmholtz, H.: Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern mit anwendung auf Die thierisch-elektrischen versuche. Ann. Der Physik 165, 211–233 (1853). https://doi.org/10.1002/andp.18531650603

    Article  ADS  Google Scholar 

  103. Gouy, M.: Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910). https://doi.org/10.1051/jphystap:019100090045700

    Article  CAS  Google Scholar 

  104. Grahame, D.C.: The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41, 441–501 (1947). https://doi.org/10.1021/cr60130a002

    Article  CAS  PubMed  Google Scholar 

  105. Chapman, D.L.: Li. A contribution to the theory of electrocapillarity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 25, 475–481 (1913). https://doi.org/10.1080/14786440408634187

    Article  Google Scholar 

  106. Chen, L.D.: Cations play an essential role in CO2 reduction. Nat. Catal. 4, 641–642 (2021). https://doi.org/10.1038/s41929-021-00667-1

    Article  CAS  Google Scholar 

  107. Sa, Y.J., Lee, C.W., Lee, S.Y., et al.: Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction. Chem. Soc. Rev. 49, 6632–6665 (2020). https://doi.org/10.1039/d0cs00030b

    Article  CAS  PubMed  Google Scholar 

  108. Murata, A., Hori, Y.: Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991). https://doi.org/10.1246/bcsj.64.123

    Article  CAS  Google Scholar 

  109. Ringe, S., Clark, E.L., Resasco, J., et al.: Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019). https://doi.org/10.1039/c9ee01341e

    Article  CAS  Google Scholar 

  110. Frumkin, A.N.: Influence of cation adsorption on the kinetics of electrode processes. Trans. Faraday Soc. 55, 156 (1959). https://doi.org/10.1039/tf9595500156

    Article  CAS  Google Scholar 

  111. Heyrovskýa, J.: The processes at the mercury dropping cathode. Part II. The hydrogen overpotential. Trans. Faraday Soc. 19, 785–788 (1924). https://doi.org/10.1039/tf9241900785

    Article  Google Scholar 

  112. Monteiro, M.C.O., Dattila, F., Hagedoorn, B., et al.: Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021). https://doi.org/10.1038/s41929-021-00655-5

    Article  CAS  Google Scholar 

  113. Singh, M.R., Kwon, Y., Lum, Y., et al.: Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016). https://doi.org/10.1021/jacs.6b07612

    Article  CAS  PubMed  Google Scholar 

  114. Mills, J.N., McCrum, I.T., Janik, M.J.: Alkali cation specific adsorption onto fcc(111) transition metal electrodes. Phys. Chem. Chem. Phys. 16, 13699–13707 (2014). https://doi.org/10.1039/c4cp00760c

    Article  CAS  PubMed  Google Scholar 

  115. Strmcnik, D., Uchimura, M., Wang, C., et al.: Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013). https://doi.org/10.1038/nchem.1574

    Article  CAS  PubMed  Google Scholar 

  116. Gauthier, J.A., Fields, M., Bajdich, M., et al.: Facile electron transfer to CO2 during adsorption at the Metal|Solution interface. J. Phys. Chem. C 123, 29278–29283 (2019). https://doi.org/10.1021/acs.jpcc.9b10205

    Article  CAS  Google Scholar 

  117. Resasco, J., Lum, Y., Clark, E., et al.: Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5, 1064–1072 (2018). https://doi.org/10.1002/celc.201701316

    Article  CAS  Google Scholar 

  118. Zhu, Q.S., Wallentine, S.K., Deng, G.H., et al.: The solvation-induced Onsager reaction field rather than the double-layer field controls CO2 reduction on gold. JACS Au 2, 472–482 (2022). https://doi.org/10.1021/jacsau.1c00512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ovalle, V.J., Hsu, Y.S., Agrawal, N., et al.: Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal. 5, 624–632 (2022). https://doi.org/10.1038/s41929-022-00816-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the International Cooperation Program of Science and Technology Commission of Shanghai Municipality (No. 22160712100), the National Natural Science Foundation of China (No. 22178274) and National Key R&D Program of China (No.2022YFE0102900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., He, X. & Lin, R. Electrochemical Carbon Dioxide Reduction in Acidic Media. Electrochem. Energy Rev. 7, 8 (2024). https://doi.org/10.1007/s41918-024-00210-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-024-00210-3

Keywords

Navigation