Skip to main content

Advertisement

Log in

First principles investigation of transition metal hydrides LiXH3 (X = Ti, Mn, and Cu) for hydrogen storage

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Renewable energy prices are decreasing, making it easier to make energy systems that are good for the environment. High-density storage for renewable energy is possible with hydrogen. This work focuses on the theoretical study of LiXH3 (where X = Ti, Mn, and Cu), including their structural, electronic, mechanical, thermoelectric, and hydrogen storage properties, using first-principles calculations. LiCuH3 is more stable than LiMnH3 and LiTiH3, based on the optimization graph. The electronic properties show the metallic nature of these studied hydrides. Born’s criterion indicates that all studied hydrides are brittle for various mechanical applications. LiTiH3, LiMnH3, and LiCuH3 are all thought to be able to store hydrogen with gravimetric storage capacities of 5.22%, 4.66%, and 4.11%, respectively. Based on how their thermoelectric properties change with temperature, all the materials under study can absorb heat energy, which shows that they are both electrically and thermally conductive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availabilty statement

Data will be made available on suitable request.

References

  1. Pan, Y., Yu, E.: Theoretical prediction of structure, electronic and optical properties of VH2 hydrogen storage material. Int. J. Hydrog. Energy 47(64), 27608–27616 (2022)

    Article  Google Scholar 

  2. Usman, M., der Rehman, J., Tahir, M.B., Hussain, A.: Structural, electronics, magnetic, optical, mechanical and hydrogen storage properties of Ga-based hydride-perovskites XGaH3 (X= K, Li). Int. J. Energy Res. 46(11), 15617–15626 (2022)

    Article  Google Scholar 

  3. Vajeeston, P., Ravindran, P., Kjekshus, A., Fjellvåg, H.: Structural stability of alkali boron tetrahydrides ABH4 (A= Li, Na, K, Rb, Cs) from first principle calculation. J. Alloy. Comp. 387, 97 (2005)

    Article  Google Scholar 

  4. Wu, S., Tseng, K.Y., Kato, R., Wu, T.S., Large, A., Peng, Y.K., Tsang, S.C.E.: Rapid interchangeable hydrogen, hydride, and proton species at the interface of transition metal atom on oxide surface. J. Am. Chem. Soc. 143(24), 9105–9112 (2021)

    Article  Google Scholar 

  5. Ardahaie, S.S., Hosseini, M.J., Eisapour, M., Eisapour, A.H., Ranjbar, A.A.: A novel porous metal hydride tank for hydrogen energy storage and consumption assisted by PCM jackets and spiral tubes. J. Clean. Prod. 311, 127674 (2021)

    Article  Google Scholar 

  6. Nguyen, H.Q., Shabani, B.: Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. Int. J. Hydrog. Energy 46(62), 31699–31726 (2021)

    Article  Google Scholar 

  7. Gencer, A., Surucu, G.: Enhancement of hydrogen storage properties of Ca3CH antiperovskite compound with hydrogen doping. Int. J. Energy Res. 44(1), 567–573 (2020)

    Article  Google Scholar 

  8. Gencer, A., Aydin, S., Surucu, O., Wang, X., Deligoz, E., Surucu, G.: Enhanced hydrogen storage of a functional material: Hf2CF2 MXene with Li decoration. Appl. Surf. Sci. 551, 149484 (2021)

    Article  Google Scholar 

  9. Zhou, F., Ding, G., Cheng, Z., Surucu, G., Chen, H., Wang, X.: Pnma metal hydride system LiBH: a superior topological semimetal with the coexistence of twofold and quadruple degenerate topological nodal lines. J. Phys. Condens. Matter 32(36), 365502 (2020)

    Article  Google Scholar 

  10. Lototskyy, M., Tolj, I., Klochko, Y., Davids, M.W., Swanepoel, D., Linkov, V.: Metal hydride hydrogen storage tank for fuel cell utility vehicles. Int. J. Hydrog. Energy 45(14), 7958–7967 (2020)

    Article  Google Scholar 

  11. Sahoo, D.K., Jena, S., Dutta, J., Rana, A., Biswal, H.S.: Nature and strength of M-H··· S and M–H··· Se (M= Mn, Fe, & Co) hydrogen bond. J. Phys. Chem. A 123(11), 2227–2236 (2019)

    Article  Google Scholar 

  12. Baysal, M.B., Surucu, G., Deligoz, E., Ozısık, H.: The effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides for hydrogen storage applications. Int. J. Hydrog. Energy 43(52), 23397–23408 (2018)

    Article  Google Scholar 

  13. Sakintuna, B., Lamari-Darkrim, F., Hirscher, M.: Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32(9), 1121–1140 (2007)

    Article  Google Scholar 

  14. Ya’aini, N., Pillay A., Krishnan, L.G., Ripin, A., Synthesis of activated carbon doped with transition metals for hydrogen storage, E3S Web of Conferences, vol. 90, p. 01016. EDP Sciences (2019)

  15. Goossens, N., Lapauw, T., Lambrinou, K., Vleugels, J.: Synthesis of MAX phase-based ceramics from early transition metal hydride powders. J. Eur. Ceram. Soc. 42(16), 7389–7402 (2022)

    Article  Google Scholar 

  16. Afzal, M., Gupta, N., Mallik, A., Vishnulal, K.S., Sharma, P.: Experimental analysis of a metal hydride hydrogen storage system with hexagonal honeycomb-based heat transfer enhancements-part B. Int. J. Hydrog. Energy 46(24), 13131–13141 (2021)

    Article  Google Scholar 

  17. Einaga, M., Sakata, M., Ishikawa, T., Shimizu, K., Eremets, M.I., Drozdov, A.P., Ohishi, Y.: Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12(9), 835–838 (2016)

    Article  Google Scholar 

  18. Barthélémy, H., Weber, M., Barbier, F.: Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrog. Energy 42(11), 7254–7262 (2017)

    Article  Google Scholar 

  19. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  Google Scholar 

  20. Dar, S.A., Srivastava, V., Sakalle, U.K.: A first-principles calculation on structural, electronic, magnetic, mechanical, and thermodynamic properties of SrAmO3. J. Supercond. Novel Magn 30(11), 3055–3063 (2017)

    Article  Google Scholar 

  21. Avery, A.D., Zhou, B.H., Lee, J., Lee, E.S., Miller, E.M., Ihly, R., Ferguson, A.J.: Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 1(4), 1–9 (2016)

    Article  Google Scholar 

  22. Patel, N., Miotello, A.: Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: a review and the perspectives to substitute noble metals. Int. J. Hydrog. Energy 40(3), 1429–1464 (2015)

    Article  Google Scholar 

  23. Gattia, D.M., Montone, A., Di Sarcina, I., Nacucchi, M., De Pascalis, F., Re, M., Antisari, M.V.: On the degradation mechanisms of Mg hydride pellets for hydrogen storage in tanks. Int. J. Hydrog. Energy 41(23), 9834–9840 (2016)

    Article  Google Scholar 

  24. Kasumova, R.J., Safarova, G., Kerimova, N.: Ternary wide-bandgap chalcogenides LiGaS2 and BaGaS7 for the mid-IR. Int. J. Eng. Comput. Sci. 3, 7823 (2014)

    Google Scholar 

  25. Coelho, P.M., Nguyen Cong, K., Bonilla, M., Kolekar, S., Phan, M.H., Avila, J., Batzill, M.: Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 123(22), 14089–14096 (2019)

    Article  Google Scholar 

  26. Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90(22), 1–4 (2014)

    Article  Google Scholar 

  27. Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76(5), 1–15 (2007)

    Google Scholar 

  28. Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)

    Article  Google Scholar 

  29. Wen, Y., Wang, L., Liu, H., Song, L.: Ab initio study of the elastic and mechanical properties of B19 TiAl. Crystals 7(2), 39 (2017)

    Article  Google Scholar 

  30. Conn´etable, D., Thomas, O.: First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi. Phys. Rev. B 79(9), 1–10 (2009)

    Article  Google Scholar 

  31. Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)

    Article  Google Scholar 

  32. Surucu, G., Gencer, A., Candan, A., Gullu, H.H., Isik, M.: CaXH3 (X= Mn, Fe, Co) perovskite-type hydrides for hydrogen storage applications. Int. J. Energy Res. 44(3), 2345–2354 (2020)

    Article  Google Scholar 

  33. Bouhemadou, A., Khenata, R.: Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3. Comput. Mater. Sci. 39, 803 (2007)

    Article  Google Scholar 

  34. Ullah, R., Ali, M.A., Murtaza, G., Khan, A., Mahmood, A.: Ab initio study for the structural, electronic, magnetic, optical, and thermoelectric properties of K2OsX6 (X= Cl, Br) compounds. Int. J. Energy Res. 44(11), 9035–9049 (2020)

    Article  Google Scholar 

  35. Amrich, O., Amine Monir, M.E., Baltach, H., Omran, S.B., Sun, X.W., Wang, X., Khenata, R.: Half-metallic ferrimagnetic characteristics of Co2YZ (Z= P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J. Supercond. Novel Magn. 31(1), 241–250 (2018)

    Article  Google Scholar 

  36. Azam S., Khan S.A., Goumri-Said, S.: Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs2 (A = K, Rb). Mater. Res. Bull. 70, 847–855 (2015)

    Article  Google Scholar 

  37. Vasileska, D., Khan, H.R., Ahmed, S.S., Kannan, G., Ringhofer, C.: Quantum and coulomb effects in nano devices, pp. 97–181. Springer, Nano-Electronic Devices (2011)

    Google Scholar 

  38. Reshak, A.: Thermoelectric properties for AA-and AB-stacking of a carbon nitride polymorph (C3N4). RSC Adv. 6, 98197–98207 (2016)

    Article  Google Scholar 

  39. Kumar Gudelli, V., Kanchana, V., Vaitheeswaran, G., Svane, A., Christensen, N.E.: Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2. J. Appl. Phys. 114(22), 223707 (2013)

    Article  Google Scholar 

  40. Ito, M., et al.: Electrical and thermal properties of titanium hydrides. J. Alloys Compd. 420(1–2), 25–28 (2006)

    Article  Google Scholar 

  41. Kumar, V., Roy, D.R.: Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride. J. Mater. Sci. 53(11), 8302–8313 (2018)

    Article  Google Scholar 

  42. Takagi, S., Saitoh, H., Endo, N., Sato, R., Ikeshoji, T., Matsuo, M., Miwa, K., Aoki, K., Orimo, S.I.: Density-functional study of perovskite-type hydride LiNiH3 and its synthesis: mechanism for formation of metallic perovskite. Phys. Rev. B 87(12), 125134 (2013)

    Article  Google Scholar 

  43. Tritt, T., Rowe, D.: Thermoelectrics Handbook: Macro to Nano. CRC Press, Boca Raton, FL (2005)

    Google Scholar 

  44. Ali, Z., Ahmad, I., Khan, I., Amin, B.: Electronic structure of cubic perovskite SnTaO3. Intermetallics 31, 287–291 (2012)

    Article  Google Scholar 

  45. Gencer, A., Surucu, G.: Investigation of structural, electronic and lattice dynamical properties of XNiH3 (X= Li, Na and K) perovskite type hydrides and their hydrogen storage applications. Int. J. Hydrog. Energy 44(29), 15173–15182 (2019)

    Article  Google Scholar 

  46. Goidin, V.V., Molchanov, V.V., Buyanov, R.A.: Mechanochemical synthesis of intermetallic hydrides at elevated hydrogen pressures. Inorg. Mater. 40(11), 1165–1168 (2004)

    Article  Google Scholar 

  47. Walker, G. (ed.): Solid-state hydrogen storage: materials and chemistry. Elsevier (2008)

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SFAS; Methodology, KI and HHR; Software, KI and SFAS; Validation, GM; Formal Analysis, HR and IJK; Investigation, SFAS; Resources, GM; Data Curation, SFAS and IJK; Writing-Original Draft Preparation, SFAS and KI; Writing-Review & Editing, HHR; Visualization, GM and HHR; Supervision, GM; Project Administration, GM; Funding Acquisition, No,

Corresponding authors

Correspondence to G. Murtaza or Hafiz Hamid Raza.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.F.A., Murtaza, G., Ismail, K. et al. First principles investigation of transition metal hydrides LiXH3 (X = Ti, Mn, and Cu) for hydrogen storage. J Comput Electron 22, 921–929 (2023). https://doi.org/10.1007/s10825-023-02065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02065-1

Keywords

Navigation