Skip to main content
Log in

Analytical prediction for quasi-TE mode in silicon nanowire optical rectangular waveguide

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Theoretical and numerical mode estimation performed on silicon nanowire optical rectangular waveguide (SNORW) is presented for on-chip communication in photonic integrated circuits. The propagation behavior of electric and magnetic field is investigated, where zeroth order mode is found dominating inside the nanoslot region of SNORW, for the circularly symmetric quasi-TE mode to propagate. This SNORW structure supports hybrid mode, which derives its behavioral root from the rectangular waveguide and functional root from the slot waveguide. In periodic silicon nanowire-based waveguide, it is found that the envelope of mode field intensity closely matches with rectangular waveguide, and the guiding properties closely match with slot waveguide. The type of mode is analyzed by full-vectorial finite element method (FEM) and the analytical expression is derived using effective index method. Analytical expressions are used to express Quasi-TE mode in terms of material profile and waveguide physical parameters. The results obtained for SNORW are in S, C and L wavelength bands and are compared with the earlier reported work on slot waveguide, and the field intensity obtained with the theoretical equations is also compared with that of FEM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Li, R., Zhao, Y., Li, R., Ge, Y., Xu, Z.: Silicon-on-insulator slot waveguide design for C band optical amplification confinement. Opt. Mater. Expr. 11(7), 1989 (2021). https://doi.org/10.1364/OME.427415

    Article  Google Scholar 

  2. Li, L., et al.: Bright field structural colors in silicon-on-insulator nanostructures. ACS Appl. Mater. Interfaces 13(3), 4364–4373 (2021). https://doi.org/10.1021/acsami.0c19126

    Article  Google Scholar 

  3. Almeida, V.R., Xu, Q., Barrios, C.A., Lipson, M.: Guiding and confining light in void nanostructure. Opt. Lett. 29(11), 1209 (2004). https://doi.org/10.1364/OL.29.001209

    Article  Google Scholar 

  4. Cam Hoang, T.H.: Analysis on slotted photonic crystal cavity and waveguide combination in silicon-on-insulator platform. Optik (Stuttg) 251, 168465 (2022). https://doi.org/10.1016/j.ijleo.2021.168465

    Article  Google Scholar 

  5. Kazanskiy, N.L., Butt, M.A., Khonina, S.N.: Silicon photonic devices realized on refractive index engineered subwavelength grating waveguides-a review. Opt. Laser Technol. 138, 106863 (2021). https://doi.org/10.1016/j.optlastec.2020.106863

    Article  Google Scholar 

  6. Iqbal, M., Zhao, D., Ma, Y., Zhong, K.: Designing optical waveguides: myth and reality. Brazilian J. Phys. 50(6), 857–873 (2020). https://doi.org/10.1007/s13538-020-00763-w

    Article  Google Scholar 

  7. Steglich, P.: “Silicon-on-insulator slot waveguides: theory and applications in electro-optics and optical sensing emerging waveguide technology. InTech (2018)

    Google Scholar 

  8. Xu, Q., Almeida, V.R., Panepucci, R.R., Lipson, M.: Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29(14), 1626 (2004). https://doi.org/10.1364/OL.29.001626

    Article  Google Scholar 

  9. Priye, V., Malviya, N., Mickelson, A.: Analytical predictions for nonlinear optical processes in silicon slot waveguides. J. Comput. Electron. 17(2), 857–865 (2018). https://doi.org/10.1007/s10825-018-1150-8

    Article  Google Scholar 

  10. Sun, R., et al.: Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm. Opt. Express 15(26), 17967 (2007). https://doi.org/10.1364/OE.15.017967

    Article  Google Scholar 

  11. Singh, R.R.: Structural optimization and parametric analysis of SOI optical slot waveguides. J. Comput. Electron. (Feb. 2020). https://doi.org/10.1007/s10825-020-01473-x

    Article  Google Scholar 

  12. Khorasaninejad, M., Saini, S.S.: Silicon nanowire optical waveguide (SNOW). Opt. Express 18(22), 23442 (2010). https://doi.org/10.1364/OE.18.023442

    Article  Google Scholar 

  13. Khorasaninejad, M., Saini, S.S.: Bend waveguides on silicon nanowire optical waveguide (SNOW). IEEE Photonics J. 3(4), 696–702 (2011). https://doi.org/10.1109/JPHOT.2011.2160527

    Article  Google Scholar 

  14. Singh, R.R.: Dispersion tailoring of silicon nanowire optical rectangular waveguide (SNORW). SN Appl. Sci. 2(3), 502 (2020). https://doi.org/10.1007/s42452-020-2309-z

    Article  Google Scholar 

  15. Singh, R.R., Malviya, N., Priye, V.: Parametric analysis of silicon nanowire optical rectangular waveguide sensor. IEEE Photonics Technol. Lett. 28(24), 2889–2892 (2016). https://doi.org/10.1109/LPT.2016.2624501

    Article  Google Scholar 

  16. Singh, R.R., Priye, V.: Silicon nanowire optical rectangular waveguide biosensor for DNA hybridization. IEEE Photonics Technol. Lett. 30(12), 1123–1126 (2018). https://doi.org/10.1109/LPT.2018.2835152

    Article  Google Scholar 

  17. Yang, Y.-H., Wu, S.-J., Chiu, H.-S., Lin, P.-I., Chen, Y.-T.: Catalytic growth of silicon nanowires assisted by laser ablation. J. Phys. Chem. B 108(3), 846–852 (2004). https://doi.org/10.1021/jp030663d

    Article  Google Scholar 

  18. Fuhrmann, B., Leipner, H.S., Höche, H.-R., Schubert, L., Werner, P., Gösele, U.: Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 5(12), 2524–2527 (2005). https://doi.org/10.1021/nl051856a

    Article  Google Scholar 

  19. Pan, H., et al.: Growth of Si nanowires by thermal evaporation. Nanotechnology 16(4), 417–421 (Apr. 2005). https://doi.org/10.1088/0957-4484/16/4/014

    Article  Google Scholar 

  20. Dick, K.A., Deppert, K., Mårtensson, T., Mandl, B., Samuelson, L., Seifert, W.: Failure of the vapor−liquid−solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 5(4), 761–764 (2005). https://doi.org/10.1021/nl050301c

    Article  Google Scholar 

  21. Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964). https://doi.org/10.1063/1.1753975

    Article  Google Scholar 

  22. Westwater, J.: “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 15(3), 554 (1997). https://doi.org/10.1116/1.589291

    Article  Google Scholar 

  23. Latu-Romain, L., Mouchet, C., Cayron, C., Rouviere, E., Simonato, J.-P.: Growth parameters and shape specific synthesis of silicon nanowires by the VLS method. J. Nanoparticle Res. 10(8), 1287–1291 (Dec. 2008). https://doi.org/10.1007/s11051-007-9350-3

    Article  Google Scholar 

  24. Fu, Y.Q., et al.: “Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B Microelectron Nanom. Struct. 27(3), 1520 (2009). https://doi.org/10.1116/1.3065991

    Article  Google Scholar 

  25. Qiu, T., Wu, X.L., Siu, G.G., Chu, P.K.: Intergrowth mechanism of silicon nanowires and silver dendrites. J. Electron. Mater. 35(10), 1879–1884 (2006). https://doi.org/10.1007/s11664-006-0171-4

    Article  Google Scholar 

  26. Sohi, P.A., Kahrizi, M.: Formation mechanism of silicon nanowires using chemical/electrochemical process. IEEE Trans. Nanotechnol. 16(3), 507–513 (2017). https://doi.org/10.1109/TNANO.2017.2694428

    Article  Google Scholar 

  27. Han, H., Huang, Z., Lee, W.: Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9(3), 271–304 (2014). https://doi.org/10.1016/j.nantod.2014.04.013

    Article  Google Scholar 

  28. Martínez, R.V., Martínez, J., Garcia, R.: Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21(24), 245301 (2010). https://doi.org/10.1088/0957-4484/21/24/245301

    Article  Google Scholar 

  29. Fathi Aghdam, F., Liao, H., Huang, Q.: Modeling interaction in nanowire growth process toward improved yield. IEEE Trans. Autom. Sci. Eng. 14(2), 1139–1149 (2017). https://doi.org/10.1109/TASE.2015.2499210

    Article  Google Scholar 

  30. Hsin, C.-L., Wu, M.-H., Wang, W.-C.: Thermoelectric devices by half-millimeter-long silicon nanowires arrays. IEEE Trans. Nanotechnol. 18, 921–924 (2019). https://doi.org/10.1109/TNANO.2019.2938624

    Article  Google Scholar 

  31. Yoon, J.-S., Kim, K., Meyyappan, M., Baek, C.-K.: Optical characteristics of silicon-based asymmetric vertical nanowire photodetectors. IEEE Trans. Electron Devices 64(5), 2261–2266 (2017). https://doi.org/10.1109/TED.2017.2682878

    Article  Google Scholar 

  32. Tong, J., et al.: Effects of the ambient medium and structure parameter on the optical properties of tapered silicon nanowire. Opt. Commun. 454, 124515 (2020). https://doi.org/10.1016/j.optcom.2019.124515

    Article  Google Scholar 

  33. Peng, K., Xu, Y., Wu, Y., Yan, Y., Lee, S.-T., Zhu, J.: Aligned single-crystalline si nanowire arrays for photovoltaic applications. Small 1(11), 1062–1067 (2005). https://doi.org/10.1002/smll.200500137

    Article  Google Scholar 

  34. Garnett, E., Yang, P.: Light trapping in silicon nanowire solar cells. Nano Lett. 10(3), 1082–1087 (2010). https://doi.org/10.1021/nl100161z

    Article  Google Scholar 

  35. Venkatesan, R., Mayandi, J., Søndenå, R., Finstad, T.G., Venkatachalapathy, V.: Investigating antireflection properties of hybrid silicon nanostructures comprising rod-like nanopores and nano-textured surface. Mater. Lett. 275, 128087 (2020). https://doi.org/10.1016/j.matlet.2020.128087

    Article  Google Scholar 

  36. Srivastava, S.K., Kumar, D., Singh, P.K., Kar, M., Kumar, V., Husain, M.: Excellent antireflection properties of vertical silicon nanowire arrays. Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (Sep. 2010). https://doi.org/10.1016/j.solmat.2010.02.033

    Article  Google Scholar 

  37. Chan, C.K., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (Jan. 2008). https://doi.org/10.1038/nnano.2007.411

    Article  Google Scholar 

  38. Goldberger, J., Hochbaum, A.I., Fan, R., Yang, P.: Silicon vertically integrated nanowire field effect transistors. Nano Lett. 6(5), 973–977 (May 2006). https://doi.org/10.1021/nl060166j

    Article  Google Scholar 

  39. Bae, J., et al.: Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters. Nanotechnology 21(9), 095502 (Mar. 2010). https://doi.org/10.1088/0957-4484/21/9/095502

    Article  Google Scholar 

  40. Cui, Y.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)

    Article  Google Scholar 

  41. Abdul Rashid, J.I., Abdullah, J., Yusof, N.A., Hajian, R.: The development of silicon nanowire as sensing material and its applications. J. Nanomater 2013, 1–16 (2013). https://doi.org/10.1155/2013/328093

    Article  Google Scholar 

  42. T. T. Aalto, M. Harjanne, M. Kapulainen, P. Heimala, and M. J. Leppihalme (2004) “Development of silicon-on-insulator waveguide technology. 2014: 81, doi: https://doi.org/10.1117/12.537540.

  43. Zengzhi, H., et al.: High confinement factor ridge slot waveguide for optical sensing. IEEE Photonics Technol. Lett. 27(22), 2395–2398 (Nov. 2015). https://doi.org/10.1109/LPT.2015.2466595

    Article  Google Scholar 

  44. Zhou, F., Su, H., Joe, H.-E., Jun, M.B.-G.: Temperature insensitive fiber optical refractive index probe with large dynamic range at 1,550 nm. Sensors Actuators A Phys. 312, 112102,(2020). https://doi.org/10.1016/j.sna.2020.112102

    Article  Google Scholar 

  45. Agrawal, G.P.: Fiber-optic communication systems, 4th edn. Wiley-Blackwell, Oxford (2010)

    Book  Google Scholar 

  46. An, L., Liu, H., Sun, Q., Huang, N., Wang, Z.: Wavelength conversion in highly nonlinear silicon–organic hybrid slot waveguides. Appl. Opt. 53(22), 4886 (Aug. 2014). https://doi.org/10.1364/AO.53.004886

    Article  Google Scholar 

  47. Han, Y., Yan, Z., Ng, W.K., Xue, Y., Wong, K.S., Lau, K.M.: Bufferless 15 µm III-V lasers grown on Si-photonics 220 nm silicon-on-insulator platforms. Optica 7(2), 148 (Feb. 2020). https://doi.org/10.1364/OPTICA.381745

    Article  Google Scholar 

  48. A. J. F. Orlando, “Periodic Circular Waveguides Containing Azimuthally Magnetized Ferrite Rod,” in 22nd European Microwave Conference, 1992, 1992, pp. 539–544, doi: https://doi.org/10.1109/EUMA.1992.335761.

  49. Kapoor, A., Singh, G.S.: Mode classification in cylindrical dielectric waveguides. J. Light. Technol. 18(6), 849–852 (Jun. 2000). https://doi.org/10.1109/50.848397

    Article  Google Scholar 

  50. Dar, T., Homola, J., Rahman, B.M.A., Rajarajan, M.: Label-free slot-waveguide biosensor for the detection of DNA hybridization. Appl. Opt. 51(34), 8195 (Dec. 2012). https://doi.org/10.1364/AO.51.008195

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Raj Singh.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.R., Priye, V. Analytical prediction for quasi-TE mode in silicon nanowire optical rectangular waveguide. J Comput Electron 21, 942–952 (2022). https://doi.org/10.1007/s10825-022-01887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01887-9

Keywords

Navigation