Skip to main content
Log in

Analytical predictions for nonlinear optical processes in silicon slot waveguides

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Analytical expressions derived for dispersion relations and fields are used to obtain analytical predictions for the performance of modulators fabricated in second-order \((\upchi ^{2})\) and third-order \((\upchi ^{3})\) nonlinear materials filled into waveguide slot of silicon-on-insulator waveguides. Analytical expressions are used to model the electron-optical modulation and Kerr effect on slot waveguides for the theoretical modeling. The results obtained for slot waveguides with second-order nonlinearities are compared with those obtained under the planar-waveguide approximations reported as in earlier work. Also, exhaustive solutions are obtained for third-order nonlinear slot waveguides. This work employs long standing and reliable mathematical methods to develop the computational modal of photonics integrated devices. Moreover, the present work allows one a new perspective on design of various optical devices based on low-index sub-wavelength nonlinear slot waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leuthold, J., Koos, C., Freude, W., Member, S., Alloatti, L., Palmer, R., Korn, D., Pfeifle, J., Lauermann, M., Dinu, R., Wehrli, S., Member, S., Jazbinsek, M., Peter, G., Waldow, M., Wahlbrink, T., Bolten, J., Kurz, H., Fournier, M., Fedeli, J., Yu, H., Bogaerts, W.: Silicon-organic hybrid electro-optical devices. IEEE J. Sel. Top. Quantum Electron. 19, 114 (2013)

    Article  Google Scholar 

  2. Lipson, M.: Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Light. Technol. 23, 4222–4238 (2005). https://doi.org/10.1109/JLT.2005.858225

    Article  Google Scholar 

  3. Leuthold, J., Freude, W., Brosi, J., Baets, R., Dumon, P., Biaggio, I., Scimeca, M.L., Diederich, F., Frank, B., Koos, C.: Silicon organic hybrid technology—a platform for practical nonlinear optics. Proc. IEEE 97, 1304–1316 (2009). https://doi.org/10.1109/JPROC.2009.2016849

    Article  Google Scholar 

  4. Almeida, V.R., Xu, Q., Barrios, C.A., Lipson, M.: Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209 (2004)

    Article  Google Scholar 

  5. Dong, P., Qian, W., Liao, S., Liang, H., Kung, C.-C., Feng, N.-N., Shafiiha, R., Fong, J., Feng, D., Krishnamoorthy, A.V., Asghari, M.: Low loss shallow-ridge silicon waveguides. Opt. Express 18, 14474 (2010). https://doi.org/10.1364/OE.18.014474

    Article  Google Scholar 

  6. Rahman, B.M.A., Leung, D.M.H., Grattan, K.T.V: Light guidance in low-index slot-waveguides. In: 2012 7th International Conference on Electrical and Computer Engineering, pp. 506–509. IEEE (2012)

  7. Xu, Q., Almeida, V.R., Panepucci, R.R., Lipson, M.: Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29, 1626–1628 (2004)

    Article  Google Scholar 

  8. Yang, A.: Nanophotonic waveguides for biomolecular transport and particle control. Ph.D. Thesis, Cornell University (2010). https://hdl.handle.net/1813/17775

  9. Almeida, V.R., Barrios, C.A., Panepucci, R.R., Lipson, M.: All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004). https://doi.org/10.1038/nature02921

    Article  Google Scholar 

  10. Singh, R.R., Malviya, N., Priye, V.: Parametric analysis of silicon nanowire optical rectangular waveguide sensor. IEEE Photonics Technol. Lett. 28, 2889–2892 (2016). https://doi.org/10.1109/LPT.2016.2624501

    Article  Google Scholar 

  11. Hiltunen, M., Hiltunen, J., Stenberg, P., Petäjä, J., Heinonen, E., Vahimaa, P., Karioja, P.: Polymeric slot waveguide at visible wavelength. Opt. Lett. 37, 4449 (2012). https://doi.org/10.1364/OL.37.004449

    Article  Google Scholar 

  12. Cox, C.H., Ackerman, E.I.: High electro-optic sensitivity \((r_{33})\) polymers: they are not just for low voltage modulators any more \({\dagger }\). J. Phys. Chem. B. 108, 8540–8542 (2004). https://doi.org/10.1021/jp036854y

    Article  Google Scholar 

  13. Alloatti, L., Korn, D., Palmer, R., Hillerkuss, D., Li, J., Barklund, A., Dinu, R., Wieland, J., Fournier, M., Fedeli, J., Yu, H., Bogaerts, W., Dumon, P., Baets, R., Koos, C., Freude, W., Leuthold, J.: 427 Gbit/s electro-optic modulator in silicon technology. Opt. Express 19, 11841 (2011). https://doi.org/10.1364/OE.19.011841

    Article  Google Scholar 

  14. Palmer, R., Alloatti, L., Korn, D., Schindler, P.C., Baier, M., Bolten, J., Wahlbrink, T., Waldow, M., Dinu, R., Freude, W., Koos, C., Leuthold, J.: Low power Mach–Zehnder modulator in silicon-organic hybrid technology. IEEE Photonics Technol. Lett. 25, 1226–1229 (2013). https://doi.org/10.1109/LPT.2013.2260858

    Article  Google Scholar 

  15. Ding, R., Baehr-jones, T., Kim, W., Spott, A., Fournier, M., Fedeli, J., Huang, S., Luo, J., Jen, A.K., Dalton, L., Hochberg, M.: Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth. J. Lightwave Technol. 29, 1112–1117 (2011)

    Article  Google Scholar 

  16. Chen, A., Sun, H., Szep, A., Shi, S., Prather, D., Lin, Z., Kim, R.S.: Achieving higher modulation efficiency in electrooptic polymer modulator with slotted silicon waveguide. J. Lightwave Technol. 29, 3310–3318 (2011). https://doi.org/10.1109/JLT.2011.2168385

    Article  Google Scholar 

  17. Malviya, N., Priye, V.: Efficient design of silicon slot waveguide optical modulator. Opto Electron. Rev. 25, 285–289 (2017). https://doi.org/10.1016/j.opelre.2017.08.001

    Article  Google Scholar 

  18. Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5524–5534 (2007)

    Article  Google Scholar 

  19. Koos, C., Vorreau, P., Vallaitis, T., Dumon, P., Bogaerts, W., Baets, R., Esembeson, B., Biaggio, I., Michinobu, T., Diederich, F., Freude, W., Leuthold, J.: All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics 3, 216–219 (2009). https://doi.org/10.1038/nphoton.2009.25

    Article  Google Scholar 

  20. Wang, Q., Farrell, G., Freir, T.: Effective index method for planar lightwave circuits containing directional couplers. Opt. Commun. 259, 133–136 (2006). https://doi.org/10.1016/j.optcom.2005.08.054

    Article  Google Scholar 

  21. Bhole, M.P., Samuel, E.P., Patil, D.S.: Numerical simulation of optical confinement in ZnO based heterostructures at 375-nm wavelength. Int. J. Mod. Phys. B 22, 1985–1995 (2008). https://doi.org/10.1142/S0217979208039241

    Article  Google Scholar 

  22. Bhole, M.P., Samuel, E.P., Patil, D.S.: Analysis of near- and far-field intensities in ZnO based heterostructure waveguides. J. Mod. Opt. 55, 1427–1439 (2008). https://doi.org/10.1080/09500340701678894

    Article  MATH  Google Scholar 

  23. Patil, D.S., Gautam, D.K.: Computer analysis and optimization of physical and material parameters of the blue laser diode. Opt. Commun. 201, 413–423 (2002). https://doi.org/10.1016/S0030-4018(01)01703-5

    Article  Google Scholar 

  24. Iu, Y.A.O.L., Ong, M.E.I.K.: Transverse magnetic modes in planar slot waveguides. JOSA B 32, 2052–2060 (2015)

    Article  Google Scholar 

  25. Le, Z., Yin, L., Zou, Y., Wu, X.: Slab waveguide theory for general multi-slot waveguide. J. Mod. Opt. 340, 0–10 (2016). https://doi.org/10.1080/09500340.2015.1137369

    Google Scholar 

  26. Nayfeh, A.H., Asfar, O.R.: Parallel-plate waveguide with sinusoidally perturbed boundaries. J. Appl. Phys. 45, 4797–4800 (1974). https://doi.org/10.1063/1.1663138

    Article  Google Scholar 

  27. Yokota, M.: Guided transverse-magnetic waves supported by a weakly nonlinear slab waveguide. J. Opt. Soc. Am. B 10, 1096 (1993). https://doi.org/10.1364/JOSAB.10.001096

    Article  Google Scholar 

  28. Priye, V., Mickelson, A.R.: Multiple scale analysis of low index subwavelength slot waveguide electrooptic modulator. In: 2013 International Conference on Microwave and Photonics (ICMAP). pp. 1–4. IEEE (2013)

  29. Comsol Multiphysics (www.comsol.co.in)

  30. Ghatak, A., Thyagarajan, K.: Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  31. Feng, N.-N., Michel, J., Kimerling, L.C.: Optical field concentration in low-index waveguides. IEEE J. Quantum Electron. 42, 883–888 (2006). https://doi.org/10.1109/JQE.2006.880061

    Article  Google Scholar 

Download references

Acknowledgements

Prof. Vishnu Priye, who was exchange scholar at University of Colorado, Boulder, USA (June 1, 2013, to August 31, 2013) acknowledges financial support from Indian Institute of Technology (Indian School Of Mines), Dhanbad, University of Colorado, Boulder, and Lightwave Logic, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishit Malviya.

Appendices

Appendix I

1.1 Terms of second-order nonlinear propagation constant

We provide here the expressions for the constants that appear in Eq. (16):

$$\begin{aligned} R_1= & {} \left[ {-\sin \left( {\kappa _f \left( {b-a} \right) } \right) +\left( {\frac{n_f^2 }{n_c^2 }\frac{\gamma _c }{\kappa _f }} \right) \cos \left( {\kappa _f \left( {b-a} \right) } \right) } \right] ,\\ R_2= & {} \left( {\frac{n_f^2 }{\kappa _f }} \right) \left[ -\cos \left( {\kappa _f \left( {b-a} \right) } \right) \right. \\&\left. +\left( {\frac{n_f^2 }{n_c^2 }\frac{\gamma _c }{\kappa _f }} \right) \sin \left( {\kappa _f \left( {b-a} \right) } \right) \right] ,\\ R_3= & {} \left( {\frac{n_f^2 }{n_c^2 }\frac{\gamma _c }{\kappa _f }} \right) ; \quad R_4 =\left( {\frac{n_f^2 }{\kappa _f }} \right) ;\\ \alpha _1= & {} -\,a\sinh \left( {\gamma _s a} \right) \left( {\frac{1}{2\kappa _f }\left( {\frac{n_f^2 }{n_c^2 }\frac{\gamma _s }{\kappa _f }} \right) +\frac{1}{2\gamma _s }} \right) ,\\ \alpha _2= & {} \left( {\frac{a}{2n_f^2 }\cosh \left( {\gamma _s a} \right) } \right) -\left( {\frac{1}{2n_f^2 \kappa _f }\left( {\frac{n_f^2 }{n_c^2 }\frac{\gamma _c }{\kappa _f }} \right) \sinh \left( {\gamma _s a} \right) } \right) \\&-\left( {\frac{1}{2n_{\mathrm{s}0}^2 \gamma _s }\left( {\sinh \left( {\gamma _s a} \right) +\gamma _s a\cosh \left( {\gamma _s a} \right) } \right) } \right) ,\\ \alpha _3= & {} \left( {\left( {\frac{-\,b}{2\kappa _f }} \right) \sin \left( {\kappa _f \left( {b-a} \right) } \right) \cosh \left( {\gamma _s a} \right) } \right) \\&+\left( {\left( {\frac{b}{2\kappa _f }} \right) \left( {\frac{n_f^2 }{n_c^2 }\frac{\gamma _c }{\kappa _f }} \right) \cos \left( {\kappa _f \left( {b-a} \right) } \right) \sinh \left( {\gamma _s a} \right) }\right) \\&+\left( {\frac{-1}{2\gamma _c }} \right) \left( {\cosh \left( {\gamma _s a} \right) \cos \left( {\kappa _f \left( {b-a} \right) } \right) } \right. \\&+\left. {\left( {\frac{n_f^2 }{n_c^2 }\frac{\gamma _c }{\kappa _f }} \right) \sinh \left( {\gamma _s a} \right) \sin \left( {\kappa _f \left( {b-a} \right) } \right) } \right) , \end{aligned}$$
$$\begin{aligned} \alpha _4= & {} \left( {\frac{-1}{2n_f^2 \kappa _f }} \right) \left[ \sin \left( {\kappa _f \left( {b-a} \right) } \right) \right. \\&\left. +\,\kappa _f b\cos \left( {\kappa _f \left( {b-a} \right) } \right) \right] \cosh \left( {\gamma _s a} \right) \\&+\left( {\frac{1}{2n_f^2 \kappa _f }} \right) \left[ {\cos \left( {\kappa _f \left( {b-a} \right) } \right) -\kappa _f b\sin \left( {\kappa _f \left( {b-a} \right) } \right) } \right] \\&\times \,\left( {\frac{n_f^2 }{n_{\mathrm{s}0}^2 }\frac{\gamma _c }{\kappa _f }} \right) \sinh \left( {\gamma _s a} \right) \\&+\left( {\frac{\gamma _c b-1}{2n_c^2 \gamma _c }} \right) \left[ \cosh \left( {\gamma _s a} \right) \cos \kappa _f \left( {b-a} \right) \right. \\&\left. +\left( {\frac{n_f^2 }{n_{\mathrm{s}0}^2 }\frac{\gamma _s }{\kappa _f }} \right) \sinh \left( {\gamma _s a} \right) \sin \left( {\kappa _f \left( {b-a} \right) } \right) \right] ,\\ \theta _1= & {} \frac{a\sinh \left( {\gamma _s a} \right) }{2\gamma { }_s}k_0^2 \left( {2n_{\mathrm{s}0} n_1 } \right) ,\\ \theta _2= & {} \left( {\frac{1}{2n_{\mathrm{s}0}^2 \gamma _s }\left( {\sinh \left( {\gamma _s a} \right) +\gamma _s a\cosh \left( {\gamma _s a} \right) } \right) } \right) k_0^2 \left( {2n_{\mathrm{s}0} n_1 } \right) \\&+\left( {\frac{1}{n_{\mathrm{s}0}^4 }\left( {2n_{\mathrm{s}0} n_1 } \right) \cosh \left( {\gamma _s a} \right) } \right) . \end{aligned}$$

Appendix II

1.1 Third-order nonlinear propagation constant terms

We provide here the expressions for the constants that appear in Eq. (23):

$$\begin{aligned} T_1= & {} -2\beta _0 a\sinh \left( {\gamma _s a} \right) \left[ {\frac{1}{2\gamma _s }+\frac{1}{2\kappa _f }\left( {\frac{n_f^2 }{n_{\mathrm{s}0}^2 }\frac{\gamma _s }{\kappa _f }} \right) } \right] ,\\ T_2= & {} \left( {-\frac{2\beta _0 }{2\gamma _s n_{\mathrm{s}0}^2 }} \right) \left( {\sinh \left( {\gamma _s a} \right) +\gamma _s a\cosh \left( {\gamma _s a} \right) } \right) \\&-\left( {\frac{2\beta _0 }{2\kappa _f n_f^2 }} \right) \left( {\frac{n_f^2 }{n_{\mathrm{s}0}^2 }\frac{\gamma _s }{\kappa _f }} \right) \sinh \left( {\gamma _s a} \right) \\&+\left( {\frac{\beta _0 a}{n_f^2 }} \right) \cosh \left( {\gamma _s a} \right) ,\\ T_3= & {} \left( {-\frac{2\beta _0 b}{2\kappa _f }} \right) \sin \left( {\kappa _f \left( {b-a} \right) } \right) \cosh \left( {\gamma _s a} \right) \\&+\left( {\frac{2\beta _0 b}{2\kappa _f }} \right) \cos \left( {\kappa _f \left( {b-a} \right) } \right) \sinh \left( {\gamma _s a} \right) \left( {\frac{n_f^2 }{n_{\mathrm{s}0}^2 }\frac{\gamma _s }{\kappa _f }} \right) \\&-\left( {\frac{2\beta _0 b}{2\gamma _c }} \right) \left[ \cos \left( {\gamma _s } \right) \cos \left( {\kappa _f \left( {b-a} \right) } \right) \right. \\&\left. {+\frac{n_f^2 }{n_f^2 }\frac{\gamma _s }{\kappa _f }\sinh \left( {\gamma _s a} \right) \sin \left( {\kappa _f \left( {b-a} \right) } \right) } \right] ,\\ T_4= & {} \left( {\frac{\beta _0 }{\kappa _f n_f^2 }} \right) \left[ \left( \cos \left( {\kappa _f \left( {b-a} \right) } \right) \right. \right. \\&\left. \left. -\,\kappa _f b\sin \left( {\kappa _f \left( {b-a} \right) } \right) \right) \left( {\frac{n_f^2 }{n_{\mathrm{s}0}^2 }\frac{\gamma _s }{\kappa _f }} \right) \sinh \left( {\gamma _s a} \right) \right] \\&-\left( {\frac{\beta _0 }{\kappa _f n_f^2 }} \right) \left( \sin \left( {\kappa _f \left( {b-a} \right) } \right) \right. \\&\left. +\,\kappa _f b\cos \left( {\kappa _f \left( {b-a} \right) } \right) \right) \cosh \left( {\gamma _s a} \right) \\&+\left( {\frac{\beta _0 }{\gamma _c n_c^2 }} \right) \left( {\gamma _c b-1}\right) \left[ \cos \left( {\gamma _s } \right) \cos \left( {\kappa _f \left( {b-a} \right) } \right) \right. \\&\left. {+\,\frac{n_f^2 }{n_f^2 }\frac{\gamma _s }{\kappa _f }\sinh \left( {\gamma _s a} \right) \sin \left( {\kappa _f \left( {b-a} \right) } \right) } \right] , \end{aligned}$$
$$\begin{aligned} Q_1= & {} \left( {\frac{a}{8\gamma _s}} \right) \frac{k_0 \alpha \left| {A_0 } \right| ^{2}}{\left( {\omega \varepsilon _0 n_{\mathrm{s}0}^2 } \right) ^{2}}\left( {3\beta _0^2 +\gamma _s } \right) \sinh \left( {\gamma _s a} \right) \\&+\left( {\frac{1}{32\gamma _s }} \right) \frac{k_0 \alpha \left| {A_0 } \right| ^{2}}{\left( {\omega \varepsilon _0 n_{\mathrm{s}0}^2 } \right) ^{2}}\left( {\beta _0^2 +\gamma _s^2 } \right) \cosh \left( {3\gamma _s a} \right) ,\\ Q_2= & {} \left( {\frac{1}{8\gamma _s n_{\mathrm{s}0}^2 }} \right) \frac{k_0 \alpha \left| {A_0 } \right| ^{2}}{\left( {\omega \varepsilon _0 n_{\mathrm{s}0}^2 } \right) ^{2}}\left( {3\beta _0^2 +\gamma _s^2 }\right) \\&\times \left( {\sinh \left( {\gamma _s a} \right) +\gamma _s a\cosh \left( {\gamma _s a} \right) } \right) \\&+\left( {\frac{\gamma _s }{k_0 n_{\mathrm{s}0}^4 }} \right) \frac{k_0 \alpha \left| {A_0 } \right| ^{2}}{\left( {\omega \varepsilon _0 n_{\mathrm{s}0}^2 } \right) ^{2}}\\&\times \left( {\beta _0^2 \cosh ^{2}\left( {\gamma _s a} \right) \sinh \left( {\gamma _s a} \right) +\gamma _s^2 \sinh ^{3}\left( {\gamma _s a} \right) } \right) \\&+\left( {\frac{3}{32\gamma _s n_{\mathrm{s}0}^2 }} \right) \frac{k_0 \alpha \left| {A_0 } \right| ^{2}}{\left( {\omega \varepsilon _0 n_{\mathrm{s}0}^2} \right) ^{2}}\left( {\beta _0^2 +\gamma _s^2 } \right) \sinh \left( {3\gamma _s a} \right) ,\\ P_1= & {} -\frac{\kappa _f }{n_f^2 }\sin \left( {\kappa _f \left( {b-a} \right) } \right) +\frac{\gamma _c }{n_c^2 }\cos \left( {\kappa _f \left( {b-a} \right) } \right) ,\\ P_2= & {} -\frac{\kappa _f }{n_f^2 }\cos \left( {\kappa _f \left( {b-a} \right) } \right) +\frac{\gamma _c }{n_c^2 }\sin \left( {\kappa _f \left( {b-a} \right) } \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priye, V., Malviya, N. & Mickelson, A. Analytical predictions for nonlinear optical processes in silicon slot waveguides. J Comput Electron 17, 857–865 (2018). https://doi.org/10.1007/s10825-018-1150-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1150-8

Keywords

Navigation