Skip to main content
Log in

Utilization of astaxanthin from microalgae and carotenoid rich algal biomass as a feed supplement in aquaculture and poultry industry: An overview

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Astaxanthin is one of the most effective and potent anti-oxidants astaxanthin is also a natural source for pigmentation in several aquatic organisms. Its utility to impart bright red coloration in farmed aquaculture animals is well recognized. In addition, astaxanthin has potential benefits to aquaculture species such as increasing their growth, survivability, improving flesh quality, and boosting reproductive performance and egg quality. Moreover, among of the many immunopotentiators, astaxanthin is more effective and an environmentally-friendly natural source mostly utilized in different fish diets for improving their immunological, hematological, and antioxidant properties. The demand for natural astaxanthin is also increasing in the poultry industries because of its potential in enhancing growth, immunity and pigmentation as well as the quality of both meat and egg. The green alga, Haematococcus pluvialis has received much attention for the production of astaxanthin on an industrial scale. Furthermore, Monoraphidium is another green alga that has potential for astaxanthin production. Furthermore, Chlorella zofingiensis, Chlorococcum spp., Scenedesmus spp., Chlamydomonas nivalis, Nannochloropsis spp., Chlamydocapsa spp., Chlorella vulgaris, Eremosphaera viridis, Neochloris wimmeri and Coelastrella striolata are also possible sources of astaxanthin. This review summarizes the potential microalgal sources of astaxanthin as well as downstream processing and the utilization of astaxanthin in the aquaculture and poultry industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adapted from Wayama et al. 2013)

Fig. 3

(Adapted from Yamamoto et al. 2005)

Fig. 4

(Adapted from Correia et al. 2020)

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abidin AAZ, Yokthongwattana C, Yusof ZNB (2021) Carotenogenesis in Nannochloropsis oculata under oxidative and salinity stress. Sains Malays 50:327–337

    Article  CAS  Google Scholar 

  • Aburai N, Sumida D, Abe K (2015) Effect of light level and salinity on the composition and accumulation of free and ester-type carotenoids in the aerial microalga Scenedesmus sp. (Chlorophyceae). Algal Res 8:30–36

    Article  Google Scholar 

  • Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305

    Article  CAS  Google Scholar 

  • Ahmad MT, Shariff M, Yusoff FM, Goh YM, Banerjee S (2020) Applications of microalga Chlorella vulgaris in aquaculture. Rev Aquac 12:328–346

    Article  Google Scholar 

  • Ahmadi MR, Lakeh AAB, Safi S, Ytrestoyl T, Bjerkeng B (2006) Effects of dietary astaxanthin supplementation on reproductive characteristics of rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 22:388–394

    Article  CAS  Google Scholar 

  • Ahmed F, Li Y, Fanning K, Netzel M, Schenk PM (2015) Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis. Int Food Res J 74:231–236

    Article  CAS  Google Scholar 

  • Akiba Y, Sato K, Takahashi K, Matsushita K, Komiyama H, Tsunekawa H, Nagao H (2001) Meat color modification in broiler chickens by feeding yeast Phaffia rhodozyma containing high concentrations of astaxanthin. J Appl Poult Res 10:154–161

    Article  Google Scholar 

  • Ali HEA, El-fayoumy EA, Rasmy WE, Soliman RM, Abdullah MA (2020) Two-stage cultivation of Chlorella vulgaris using light and salt stress conditions for simultaneous production of lipid, carotenoids, and antioxidants. J Appl Phycol 33:227–239

    Article  Google Scholar 

  • Alishahi M, Karamifar M, Mesbah M (2015) Effects of astaxanthin and Dunaliella salina on skin carotenoids, growth performance and immune response of Astronotus ocellatus. Aquac Int 23:1239–1248

    Article  CAS  Google Scholar 

  • Alugoju P, Swamy VKDK, Anthikapalli NVA, Tencomnao T (2022) Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 16:1–66

    Article  Google Scholar 

  • An BK, Kim KE, Jeon JY, Lee KW (2016) Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens. Springerplus 5:718

    Article  Google Scholar 

  • An Z, Yang H, Liu X, Zhangv Y (2020) Effects of astaxanthin on the immune response and reproduction of Procambarus clarkii stressed with microcystin-leucine-arginine. Fish Sci 86:759–766

    Article  CAS  Google Scholar 

  • Andrews SR, Sahu NP, Pal AK, Kumar S (2009) Haematological modulation and growth of Labeo rohita fingerlings: Effect of dietary mannan oligosaccharide, yeast extract, protein hydrolysate and Chlorella. Aquac Res 41:61–69

    Article  CAS  Google Scholar 

  • Angell AR, Nys RD, Mangott AH, Vucko MJ (2018) The effects of concentration and supplementation time of natural and synthetic sources of astaxanthin on the coloration of the prawn Penaeus monodon. Algal Res 35:577–585

    Article  Google Scholar 

  • Ao X, Kim IH (2019) Effects of astaxanthin produced by Phaffia rhodozyma on growth performance, antioxidant activities, and meat quality in Pekin ducks. Poult Sci J 98:4954–4960

    Article  CAS  Google Scholar 

  • Aoi W, Maoka T, Abe R, Fujishita M, Tominaga K (2018) Comparison of the effect of non-esterified and esterified astaxanthins on endurance performance in mice. J Clin Biochem Nutr 62:161–166

    Article  CAS  Google Scholar 

  • Awadh IAJ, Zangana BSR (2020) The effect of adding different levels of astaxanthin on the productive performance of broilers chicken reared under high environmental temperatures. Plant Arch 20:4069–4075

    Google Scholar 

  • Azaman SNA, Nagao N, Yusoff FM, Tan SW, Yeap SK (2017) A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. PeerJ 5:e3473

    Article  Google Scholar 

  • Babadi FE, Boonnoun P, Nootong K, Powtongsook S, Goto M, Shotipruk A (2020) Identification of carotenoids and chlorophylls from green algae Chlorococcum humicola and extraction by liquefied dimethyl ether. Food Bioprod Process 123:296–303

    Article  Google Scholar 

  • Baker RTM, Pfeiffer AM, Schoner FJ, Smith-Lemmon L (2002) Pigmenting efficacy of astaxanthin and canthaxanthin in fresh-water reared Atlantic salmon, Salmo salar. Anim Feed Sci Technol 99:97–106

    Article  CAS  Google Scholar 

  • Baralic I, Andjelkovic M, Djordjevic B, Dikic N, Radivojevic N, Suzin-Zivkovic V, Radojevic-Skodric S, Pejic S (2015) Effect of astaxanthin supplementation on salivary IgA, oxidative stress and inflammation in young soccer players. Evid Based Complement Altern Med 2015:783761

    Article  Google Scholar 

  • Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2:164–173

    Article  Google Scholar 

  • Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886

    Article  Google Scholar 

  • Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245

    Article  Google Scholar 

  • Björn P, Michael M, Alice CK, Petra S (2021) A method of culturing Haematococcus species for manufacturing of astaxanthin. European Patent 2021/3347484

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA (2018) Commercial-scale production of microalgae for bioproducts. In: La Barre S, Bates SS (eds) Blue Biotechnology: Production and use of marine molecules, vol 1. Wiley-VCH, Weinheim, pp 33–65

    Chapter  Google Scholar 

  • Bosque CIED, Altmann BA, Ciulu M, Halle I, Jansen S, Nolte T, Weigend S, Morlein D (2020) Meat quality parameters and sensory properties of one high-performing and two local chicken breeds fed with Vicia faba. Foods 9:1052

    Article  Google Scholar 

  • Branyikova I, Prochazkova G, Potocar T, Jezkova Z, Branyik T (2018) Harvesting of microalgae by flocculatio. Fermentation 4:93

    Article  CAS  Google Scholar 

  • Bruneel C, Lemahieu C, Fraeye I, Ryckebosch E, Muylaert K, Buyse J, Foubert I (2013) Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs. J Funct Foods 5:897–904

    Article  CAS  Google Scholar 

  • Bustamante A, Masson L, Velasco J, Valle JMD, Robert P (2016) Microencapsulation of H. pluvialis oleoresins with different fatty acid composition: Kinetic stability of astaxanthin and alpha-tocopherol. Food Chem 190:1013–1021

    Article  CAS  Google Scholar 

  • Calvo NS, Reynoso CM, Resnik S, Cortes-Jacinto E, Collins P (2020) Thermal stability of astaxanthin in oils for its use in fish food technology. Anim Feed Sci Technol 270:114668

    Article  CAS  Google Scholar 

  • Campo JAD, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854

    Article  Google Scholar 

  • Cao Y, Yang L, Qiao X, Xue C, Xu J (2021) Dietary astaxanthin: an excellent carotenoid with multiple health benefits. Crit Rev Food Sci Nutr 1–27. https://doi.org/10.1080/10408398.2021.1983766

  • Caprio FD, Altimari P, Toro L, Pagnanelli F (2015) Effect of lipids and carbohydrates extraction on astaxanthin stability in Scenedesmus sp. Chem Eng Trans 43:205–210

    Google Scholar 

  • Chattopadhyay P, Chatterjee S, Sen SK (2008) Biotechnological potential of natural food grade biocolorants. Afr J Biotechnol 7:2972–2985

    CAS  Google Scholar 

  • Chatzifotis S, Pavlidis M, Jimeno CD, Vardanis G, Sterioti A, Divanach P (2005) The effect of different carotenoid sources on skin coloration of cultured red porgy (Pagrus pagrus). Aquac Res 36:1517–1525

    Article  CAS  Google Scholar 

  • Chatzifotis S, Juan IV, Kyriazi P, Divanach P, Pavlidis M (2011) Dietary carotenoids and skin melanin content influence the coloration of farmed red porgy (Pagrus pagrus). Aquac Nutr 17:e90–e100

    Article  Google Scholar 

  • Chen J-H, Wei D, Lim P-E, Xie J, Chen WN (2022) Screening and effect evaluation of chemical inducers for enhancing astaxanthin and lipid production in mixotrophic Chromochloris zofingiensis. J Appl Phycol 34:159–176

    Article  CAS  Google Scholar 

  • Cheng CH, Guo ZX, Luo SW, Wang AL (2018a) Effects of high temperature on biochemical parameters, oxidative stress, DNA damage and apoptosis of pufferfish (Takifugu obscurus). Ecotoxicol Environ Saf 150:190–198

    Article  CAS  Google Scholar 

  • Cheng J, Li K, Yang Z, Zhou J, Cen K (2016) Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress. Bioresour Technol 204:49–54

    Article  CAS  Google Scholar 

  • Cheng X, Qi Z, Burdyny T, Kong T, Sinton D (2018b) Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip. Bioresour Technol 250:481–485

    Article  CAS  Google Scholar 

  • Cheng Y, Wu S (2019) Effect of dietary astaxanthin on the growth performance and nonspecific immunity of red swamp crayfish Procambarus clarkii. Aquaculture 512:734341

    Article  CAS  Google Scholar 

  • Chien YH, Jeng SC (1992) Pigmentation of kuruma prawn, Penaeus japonicus Bate, by various pigment sources and levels and feeding regimes. Aquaculture 102:333–346

    Article  Google Scholar 

  • Chien YH, Shiau WC (2005) The effects of dietary supplementation of algae and synthetic astaxanthin on body astaxanthin, survival, growth and low dissolved oxygen stress resistance of kuruma prawn, Marsupenaeus japonicus Bate. J Exp Mar Biol Ecol 318:201–211

    Article  CAS  Google Scholar 

  • Chimsung N, Lall SP, Tantikitti C, Verlhac-Trichet V, Milley JE (2013) Effects of dietary cholesterol on astaxanthin transport in plasma of Atlantic salmon (Salmo salar). Comp Biochem Physiol B 165:73–81

    Article  CAS  Google Scholar 

  • Choi S, Koo S (2005) Efficient syntheses of the keto-carotenoids canthaxanthin, astaxanthin, and astacene. J Org Chem 70:3328–3331

    Article  CAS  Google Scholar 

  • Choi YY, Hong ME, Jin ES, Min WH, Sim SJ (2017) Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. Bioresour Technol 249:519–526

    Article  Google Scholar 

  • Choubert G, Cravedi JP, Laurentie M (2009) Effect of alternate distribution of astaxanthin on rainbow trout (Oncorhynchus mykiss) muscle pigmentation. Aquaculture 286:100–104

    Article  CAS  Google Scholar 

  • Christian D, Zhang J, Sawdon AJ, Peng CA (2018) Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination. Bioresour Technol 256:548–551

    Article  CAS  Google Scholar 

  • Clayton D, Rutter R (2010) Inflammatory disease treatment. USA Patent 2010/0291053

  • Code of Federal Regulations Title 21 § 73.185 (n.d.) FDA decision on Haematococcus algae meal. https://www.accessdata.fda.gov. Accessed 1 Oct 2021

  • Code of Federal Regulations Title 21 § 73.35 (n.d.) FDA decision on Astaxanthin. https://www.accessdata.fda.gov. Accessed 1 Oct 2021

  • Commission Implementing Regulation (EU) 2015/1415 (2015) Concerning the authorisation of astaxanthin as a feed additive for fish, crustaceans and ornamental fish. OJEU 2015, L 220, 7–10. https://eur-lex.europa.eu/eli/reg_impl/2015/1415/oj. Accessed 21 Aug 2015

  • Commission Implementing Regulation (EU) 2020/998 (2020) Concerning the renewal of the authorisation of astaxanthin dimethyldisuccinate as a feed additive for fish and crustaceans and repealing regulation (EC) No 393/2008. OJEU 2020, L 221, 96–98. https://eur-lex.europa.eu/eli/reg_impl/2020/998/oj. Accessed 10 July 2021

  • Commission Implementing Regulation (EU) 2021/1377 (2021) Authorising the change of the conditions of use of the novel food astaxanthin-rich oleoresin from Haematococcus pluvialis algae under Regulation (EU) 2015/2283 of the European Parliament and of the Council and amending Commission Implementing Regulation (EU) 2017/2470 (Text with EEA relevance). C/2021/6050

  • Correia N, Pereira H, Silva JT, Santos T, Soares M, Sousa CB, Schüler LM, Costa M, Varela J, Pereira L, Silva J (2020) Isolation, identification and biotechnological applications of a novel, robust, free-living Chlorococcum (Oophila) amblystomatis strain isolated from a local pond. Appl Sci 10:3040

    Article  CAS  Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trosch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94

    Article  CAS  Google Scholar 

  • Dieudonne D, Wang H, Nugroho RD, He W, Zhao Q, Zhang J (2021) Assessment of response to moderate and high dose supplementation of astaxanthin in laying hens. Animals 11:1138

    Article  Google Scholar 

  • Dominguez R, Pateiro M, Gagaoua M, Barba FJ, Zhang W, Lorenzo JM (2019) A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 8:429

    Article  CAS  Google Scholar 

  • Dong J, Li C, Dai D, Zhang M, Gao Y, Li X, Li M, Zhang J, Wang X, Zhou C (2021) Protective effects of astaxanthin from Haematococcus pluvialis on the survival and oxidative stress of zebrafish embryos induced by microcystin-LR. J Appl Phycol 33:2261–2271

    Article  CAS  Google Scholar 

  • Dursun D, Koulouris A, Dalgıç AC (2020) Process simulation and techno economic analysis of astaxanthin production from agro-industrial wastes. Waste Biomass Valor 11:943–954

    Article  CAS  Google Scholar 

  • Egeland ES (2016) Carotenoids. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 507–563

    Chapter  Google Scholar 

  • Ekpe L, Inaku K, Ekpe V (2018) Antioxidant effects of astaxanthin in various diseases - A review. J Mol Pathophysiol 7:1–6

    Article  Google Scholar 

  • El-Ghany WAA (2020) Microalgae in poultry field: A comprehensive perspective. Adv Anim Vet Sci 8:888–897

    Article  Google Scholar 

  • Elwan HAM, Elnesr SS, Abdallah Y, Hamdy A, El-Bogdady AH (2019) Red yeast (Phaffia rhodozyma) as a source of astaxanthin and its impacts on productive performance and physiological responses of poultry. Worlds Poult Sci J 75:273–284

    Article  Google Scholar 

  • Elwinger K, Lignell A, Wilhelmso M (1997) Astaxanthin rich algal meal (Haematococcus pluvialis) as carotenoid source in feed for laying hens. In: Proceedings of the VII European Symposium on the Quality of Eggs and Egg Products. Poznan, Poland, pp. 52–59

  • Evans AD, Rabie M (2009) Algal and algal extract dietary supplement composition. USA Patent 2009/0142431

  • Fan F, Wan M, Huang J, Wang W, Bai W, He M, Li Y (2021) Modeling of astaxanthin production in the two-stage cultivation of Haematococcus pluvialis and its application on the optimization of vertical multi-column airlift photobioreactor. Algal Res 58:102301

    Article  Google Scholar 

  • Fang TJ, Chiou TY (1996) Batch cultivation and astaxanthin production by a mutant of the red yeast Phaffia rhodozyma NCHU-FS501. J Ind Microbiol Biotechnol 16:175–181

    CAS  Google Scholar 

  • FAO (2010) Agribusiness handbook: Poultry meat and eggs. FAO, Rome

    Google Scholar 

  • FAO (2012) The state of world fisheries and aquaculture. FAO, Rome

    Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. FAO, Rome

  • Farruggia C, Kim MB, Bae M, Lee Y, Pham TX, Yang Y, Han MJ, Park Y, Lee JY (2018) Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners. J Nutr Biochem 62:202–209

    Article  CAS  Google Scholar 

  • Feng P, Deng Z, Hu Z, Fan L (2011) Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Technol 102:10577–10584

    Article  CAS  Google Scholar 

  • Fleischmann C, Bar-Ilan N, Horowitz M, Bruchim Y, Deuster P, Heled Y (2020) Astaxanthin supplementation impacts the cellular HSP expression profile during passive heating. Cell Stress Chaperones 25:549–558

    Article  CAS  Google Scholar 

  • Fujii K, Nakashima H, Hashidzume Y, Uchiyama T, Mishiro K, Kadota Y (2010) Potential use of the astaxanthin-producing microalgae, Monoraphidium sp. GK12, as a functional aquafeed for prawns. J Appl Phycol 22:363–369

    Article  CAS  Google Scholar 

  • Fucíková C, Lewis LE (2012) Intersection of Chlorella, Muriella and Bracteacoccus: Resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea 12:83–93

    Article  Google Scholar 

  • Gao S, Li R, Heng N, Chen Y, Wang L, Li Z, Guo Y, Sheng X, Wang X, Xing K, Ni H, Qi X (2020) Effects of dietary supplementation of natural astaxanthin from Haematococcus pluvialis on antioxidant capacity, lipid metabolism, and accumulation in the egg yolk of laying hens. Poult Sci 99:5874–5882

    Article  CAS  Google Scholar 

  • Gille A, Trautmann A, Posten C, Briviba K (2016) Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii. Int J Food Sci Nutr 67:507–513

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, Calvo MM, Álvarez-Acero I, Montero P, Gómez-Guillén MC (2017) Characterization and storage stability of astaxanthin esters, fatty acid profile and α-tocopherol of lipid extract from shrimp (L. vannamei) waste with potential applications as food ingredient. Food Chem 216:37–44

    Article  Google Scholar 

  • Gong Y, Guterres HADS, Huntley M, Sørensen M, Kiron V (2017) Digestibility of the defatted microalgae Nannochloropsis sp. and Desmodesmus sp. when fed to Atlantic salmon, Salmo salar. Aquac Nutr 24:56–64

    Article  Google Scholar 

  • Gong Y, Huang J (2020) Characterization of four untapped microalgae for the production of lipids and carotenoids. Algal Res 49:101897

    Article  Google Scholar 

  • Goswami G, Chaudhuri S, Dutta D (2010) The present perspective of astaxanthin with reference to biosynthesis and pharmacological importance. World J Microbiol Biotechnol 26:1925–1939

    Article  CAS  Google Scholar 

  • Gouveia L, Veloso V, Reis A, Fernandes H, Novais J (1996) Chlorella vulgaris used to colour egg yolk. J Sci Food Agri 70:167–172

    Article  CAS  Google Scholar 

  • Gouveia L, Choubert G, Pereira N, Santinha J, Empis J, Gomes E (2002) Pigmentation of gilthead sea-bream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta, Volvocales) microalga. Aquac Res 33:987–993

    Article  CAS  Google Scholar 

  • Grung M, D’Souza FML, Borowitzka MA, Liaaen-Jensen S (1992) Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3’S)-astaxanthin esters. J Appl Phycol 4:165–171

    Article  CAS  Google Scholar 

  • Grung M, Metzger P, Liaaen-Jensen S (1994) Algal carotenoids 53; secondary carotenoids of algae 4; secondary carotenoids in the green alga Botryococcus braunii, race L, new strain. Biochem Syst Ecol 22:25–29

    Article  CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  Google Scholar 

  • Gulden SJ, Riedele C, Kopf MH, Nirschl H (2020) Potential of flotation as alternative separation process in biotechnology with focus on cost and energy efficiency. Chem Eng Sci 218:115117

    Article  CAS  Google Scholar 

  • Han T, Li X, Wang J, Wang C, Yang M, Zheng P (2018) Effects of dietary astaxanthin (AX) supplementation on pigmentation, antioxidant capacity and nutritional value of swimming crab, Portunus trituberculatus. Aquaculture 490:169–177

    Article  CAS  Google Scholar 

  • Hansen OJ, Puvanendran V, Bangera R (2016) Broodstock diet with water and astaxanthin improve condition and egg output of brood fish and larval survival in Atlantic cod, Gadus morhua, L. Aquac Res 47:819–829

    Article  CAS  Google Scholar 

  • Hayashi M, Ishibashi T, Kuwahara D, Hirasawa K (2021) Commercial production of astaxanthin with Paracoccus carotinifaciens. In: Misawa N (ed) Carotenoids: Biosynthetic and Biofunctional Approaches. Advances in Experimental Medicine and Biology. Springer, Singapore, pp 11–20.

  • Heng N, Gao S, Guo Y, Chen Y, Wang L, Sheng X, Wang X, Xing K, Xiao L, Ni H, Qi X (2020) Effects of supplementing natural astaxanthin from Haematococcus pluvialis to laying hens on egg quality during storage at 4°C and 25°C. Poult Sci 99:6877–6883

    Article  CAS  Google Scholar 

  • Herczeg D, Sipos D, Dán A, Loy C, Kallert DM, Eszterbauer E (2017) The effect of dietary immunostimulants on the susceptibility of common carp (Cyprinus carpio) to the white spot parasite, Ichthyophthirius multifiliis. Parasitol Res 65:517–530

    CAS  Google Scholar 

  • Higashi N, Takahashi J (2012) Agent for alleviating vascular failure. USA Patent 2012/0004297

  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: A review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    Article  CAS  Google Scholar 

  • Hirasawa K, Satoh H, Yoneda H, Yata T, Azuma M (2013) Method for producing astaxanthin by fermentation. USA Patent 2013/0012594

  • Ho ALFC, O’Shea SK, Pomeroy HF (2011) Dietary esterified astaxanthin effects on colour, carotenoid concentration, and compositions of clown anemonefish, Amphiprion ocellaris, skin. Aquacult Int 21:361–374

    Article  Google Scholar 

  • Honda M, Kageyama H, Hibino T, Osawa Y, Kawashima Y, Hirasawa K, Kuroda I (2021a) Evaluation and improvement of storage stability of astaxanthin isomers in oils and fats. Food Chem 352:129371

    Article  CAS  Google Scholar 

  • Honda M, Kawashima Y, Hirasawa K, Uemura T, Sun J, Hayashi Y (2021b) Astaxanthin Z-isomer-rich diets enhance egg yolk pigmentation in laying hens compared to that in all-E-isomer-rich diets. Anim Sci J 92:e13512

    Article  CAS  Google Scholar 

  • Hong Y, Wang P (2019) Method for rapidly extracting astaxanthin from Haematococcus pluvialis. China Patent 110483358

  • Hosseindoust A, Oh SM, Ko HS, Jeon SM, Ha SH, Jang A, Son JS, Kim GY, Kang HK, Kim JS (2020) Muscle antioxidant activity and meat quality are altered by supplementation of astaxanthin in broilers exposed to high temperature. Antioxidants 9:1032

    Article  CAS  Google Scholar 

  • Hua K, Cobcroft JM, Cole A, Condon K, Jerry DR, Mangott A, Praeger C, Vucko MJ, Zeng C, Zenger K, Strugnell JM (2019) The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 1:316–329

    Article  Google Scholar 

  • Huang W, Lin Y, He M, Gong Y, Huang J (2018) Induced high-yield production of zeaxanthin, lutein, and β-carotene by a mutant of Chlorella zofingiensis. J Agric Food Chem 66:891–897

    Article  CAS  Google Scholar 

  • Inborr J (1998) Haematococcus, the poultry pigmentor. Feed Mix 6:31–34

    Google Scholar 

  • Inoue H, Shimamoto S, Takahashi H, Kawashima Y, Wataru S, Ijiri D, Ohtsuka A (2019) Effects of astaxanthin-rich dried cell powder from Paracoccus carotinifaciens on carotenoid composition and lipid peroxidation in skeletal muscle of broiler chickens under thermo-neutral or realistic high temperature conditions. Anim Sci J 90:229–236

    Article  CAS  Google Scholar 

  • Irshad M, Myint AA, Hong ME, Kim J, Sim SJ (2019) One-pot, simultaneous cell wall disruption and complete extraction of astaxanthin from Haematococcus pluvialis at room temperature. ACS Sustainable Chem Eng 7:13898–13910

    Article  CAS  Google Scholar 

  • Jagruthi C, Yogeshwari G, Anbazahan SM, Mari LSS, Arockiaraj J, Mariappan P, Sudhakar GRL, Balasundaram C, Harikrishnan R (2014) Effect of dietary astaxanthin against Aeromonas hydrophila infection in common carp, Cyprinus carpio. Fish Shellfish Immunol 41:674–680

    Article  CAS  Google Scholar 

  • Janchot K, Rauytanapanit M, Honda M, Hibino T, Sirisattha S, Praneenararat T, Kageyama H, Waditee-Sirisattha R (2019) Effects of potassium chloride-induced stress on the carotenoids canthaxanthin, astaxanthin, and lipid accumulations in the green chlorococcal microalga strain 9500. J Eukaryot Microbiol 66:778–787

    Article  CAS  Google Scholar 

  • Jannel S, Caro Y, Bermudes M, Petit T (2020) Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: Advances and key challenges to allow its industrial use as novel food ingredient. J Mar Sci Eng 8:789

    Article  Google Scholar 

  • Jehlička J, Culka A, Nedbalová L (2016) Colonization of snow by microorganisms as revealed using miniature raman spectrometers-possibilities for detecting carotenoids of psychrophiles on mars? Astrobiology 16:12

    Article  Google Scholar 

  • Jiang J, Nuez-Ortin W, Angell A, Zeng C, Nys DR, Vucko MJ (2019) Enhancing the coloration of the marine ornamental fish Pseudochromis fridmani using natural and synthetic sources of astaxanthin. Algal Res 42:101596

    Article  Google Scholar 

  • Jo SW, Hong JW, Do JM, Na H, Kim JJ, Park SI, Kim YS, Kim IS, Yoon HS (2020) Nitrogen deficiency-dependent abiotic stress enhances carotenoid production in indigenous green microalga Scenedesmus rubescens KNUA042, for use as a potential resource of high value products. Sustainability 12:5445

    Article  CAS  Google Scholar 

  • Jouni Z, Makhoul Z (2012) Carotenoid-containing compositions and methods. USA Patent 2012/0238522

  • Ju ZY, Deng DF, Dominy WG, Forster IP (2011) Pigmentation of Pacific white shrimp, Litopenaeus vannamei, by dietary astaxanthin extracted from Haematococcus pluvialis. J World Aquac Soc 42:633–644

    Article  Google Scholar 

  • Ju ZY, Deng DF, Dominy WG (2012) A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture 354–355:50–55

    Article  Google Scholar 

  • Kaha M, Iwamoto K, Yahya NA, Suhaimi N, Sugiura N, Hara H, Othman NA, Zakaria Z, Suzuki K (2021) Enhancement of astaxanthin accumulation using black light in Coelastrum and Monoraphidium isolated from Malaysia. Sci Rep 11:11708

    Article  CAS  Google Scholar 

  • Kang CD, Lee JS, Park TH, Sim SJ (2005) Comparison of heterotrophic and phototrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol 68:237–241

    Article  CAS  Google Scholar 

  • Khoo KS, Lee SY, Ooi CW, Fu X, Miao X, Ling TC, Show PL (2019) Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresour Technol 288:121606

    Article  CAS  Google Scholar 

  • Kiperstok AC, Sebestyén P, Podola B, Melkonian M (2017) Biofilm cultivation of Haematococcus pluvialis enables a highly productive one-phase process for astaxanthin production using high light intensities. Algal Res 21:213–222

    Article  Google Scholar 

  • Kiron V, Phromkunthong W, Huntley M, Archibald I, Scheemaker DE (2012) Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquac Nutr 18:521–531

    Article  CAS  Google Scholar 

  • Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63

    Article  Google Scholar 

  • Kona R, Pallerla P, Addipilli R, Sripadi P, Mohan SV (2021) Lutein and β-carotene biosynthesis in Scenedesmus sp. SVMIICT1 through differential light intensities. Bioresour Technol 341:125814

  • Kong W, Yang S, Wang H, Huo H, Guo B, Liu N, Zhang A, Niu S (2020) Regulation of biomass, pigments, and lipid production by Chlorella vulgaris 31 through controlling trophic modes and carbon sources. J Appl Phycol 32:1569–1579

    Article  CAS  Google Scholar 

  • Koppe WM, Moeller NP, Baardsen GKL (2012) Feed additive for improved pigment retention. USA Patent 2012/0114823

  • Kumar A, Dhaliwal N, Dhaliwal J, Dharavath RN, Chopra K (2020) Astaxanthin attenuates oxidative stress and inflammatory responses in complete Freund-adjuvant-induced arthritis in rats. Pharmacol Rep 72:104–114

    Article  CAS  Google Scholar 

  • Kumar S, Kumar R, Diksha Kumari A, Panwar A (2022) Astaxanthin: a super antioxidant from microalgae and its therapeutic potential. J Basic Microbiol 62(9):1064–1082

  • Laje K, Seger M, Dungan B, Cooke P, Polle J, Holguin F (2019) Phytoene accumulation in the novel microalga Chlorococcum sp. using the pigment synthesis inhibitor fluridone. Mar Drugs 17:187

  • Lakeh AAB, Ahmadi MR, Safi S, Ytrestoyl T, Bjerkeng B (2010) Growth performance, mortality and carotenoid pigmentation of fry offspring as affected by dietary supplementation of astaxanthin to female rainbow trout (Oncorhynchus mykiss) broodstock. J Appl Ichthyol 26:35–39

    Article  CAS  Google Scholar 

  • Langi P, Kiokias S, Varzakas T, Proestos C (2018) Carotenoids: From plants to food and feed industries. Methods Mol Biol 1852:57–71

    Article  CAS  Google Scholar 

  • Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a β-carotene rich powder. J Ind Microbiol Biotechnol 20:82–85

    Article  CAS  Google Scholar 

  • Lee CS, Choi YE (2018) Method to enhance the astaxanthin biosynthesis in microalga Haematococcus pluvialis. Korea Patent 2018/0023232

  • Leigh S, Leigh MLS, Hoogevest PV (2008) Crystal forms of astaxanthin. USA Patent 2008/0234521

  • Leya T, Rahn A, Lütz C, Remias D (2009) Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443

    Article  CAS  Google Scholar 

  • Li F, Huang S, Lu X, Wang J, Lin M, An Y, Wu S, Cai M (2018) Effects of dietary supplementation with algal astaxanthin on growth, pigmentation, and antioxidant capacity of the blood parrot (Cichlasoma citrinellum × Cichlasoma synspilum). J Ocean Limnol 36:1851–1859

    Article  CAS  Google Scholar 

  • Li M, Wu W, Zhou P, Xie F, Zhou Q, Mai K (2014) Comparison effect of dietary astaxanthin and Haematococcus pluvialis on growth performance, antioxidant status and immune response of large yellow croaker Pseudosciaena crocea. Aquaculture 434:227–232

    Article  CAS  Google Scholar 

  • Li MY, Liu XY, Xia CG, Wang GQ, Zhang DM (2019) Astaxanthin enhances hematology, antioxidant and immunological parameters, immune-related gene expression, and disease resistance against in Channa argus. Aquac Int 27:735–746

    Article  CAS  Google Scholar 

  • Li X, Wang X, Duan C, Yi S, Gao Z, Xiao C, Agathos SN, Wang G, Li J (2020) Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol Adv 43:107602

    Article  CAS  Google Scholar 

  • Liang J, Tian YX, Yang F, Zhang JP, Skibsted LH (2009a) Antioxidant synergism between carotenoids in membranes. Astaxanthin as a radical transfer bridge. Food Chem 115:1437–1442

    Article  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009b) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  Google Scholar 

  • Ligia ADCC, Karen YFK, Susan GK (2017) Microbial production of carotenoids - A review. Afr J Biotechnol 16:139–146

    Article  Google Scholar 

  • Lignell A, Nicolin C, Larsson LH (1998) Method for increasing the production of/ in breeding and production animals in the poultry industry. USA Patent 1998/5744502

  • Lignell A, Inborr J (2000) Agent for increasing the production of/in breeding and production mammals. USA Patent 2000/6054491

  • Lim KC, Yusoff FM, Shariff M, Kamarudin MS (2018) Astaxanthin as feed supplement in aquatic animals. Rev Aquac 10:738–773

    Article  Google Scholar 

  • Lim KC, Yusoff FM, Shariff M, Kamarudin MS (2019) Dietary administration of astaxanthin improves feed utilization, growth performance and survival of Asian seabass, Lates calcarifer (Bloch, 1790). Aquac Nutr 25:1410–1421

    Article  CAS  Google Scholar 

  • Lin MQ, Ushio H, Ohshima T, Yamanaka H, Koizumi C (1998) Skin color control of the red sea bream (Pagrus major). LWT- Food Sci Technol 31:27–32

    Article  CAS  Google Scholar 

  • Lin Y, Ge J, Zhang Y, Ling H, Yan X, Ping W (2019) Monoraphidium sp. HDMA-20 is a new potential source of α-linolenic acid and eicosatetraenoic acid. Lipids Health Dis 18:56

  • Lipstein B, Hurwitz S, Bornstein S (1980) The nutritional value of algae for poultry. Dried Chlorella in layer diets. Br Poult Sci 21:23–27

    Article  CAS  Google Scholar 

  • Liu BJ, Meer VDJP, Zhang L, Zhang Y (2017) Cultivation of Haematococcus pluvialis for astaxanthin production. In: Solocombe SP, Benemann JR (eds) Microalgal Production for Biomass and High-Value Products. CRC Press, Boca Raton, pp 267–294

    Google Scholar 

  • Liu G, Hu M, Zhao Z, Lin Q, Wei D, Jiang Y (2019a) Enhancing the stability of astaxanthin by encapsulation in poly (l-lactic acid) microspheres using a supercritical anti-solvent process. Particuology 44:54–62

    Article  CAS  Google Scholar 

  • Liu J, Hu Q (2013) Chlorella: Industrial production of cell mass and chemicals. In: Richmond A, Hu Q (eds) Handbook of Microalgal Culture: Applied Phycology and Biotechnology. John Wiley & Sons, Chichester, pp 329–338

    Google Scholar 

  • Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25:1447–1456

    Article  Google Scholar 

  • Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Mar Drugs 12:3487–3515

    Article  Google Scholar 

  • Liu J, Mao X, Zhou W, Guarnieri MT (2016) Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin producing oleaginous green microalga Chlorella zofingiensis. Bioresour Technol 214:319–327

    Article  CAS  Google Scholar 

  • Liu X, Osawa T (2007) Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem Biophys Res Commun 357:187–193

    Article  CAS  Google Scholar 

  • Liu ZW, Yue Z, Zeng XA, Cheng JH, Aadil RM (2019b) Ionic liquid as an effective solvent for cell wall deconstructing through astaxanthin extraction from Haematococcus pluvialis. Int J Food Sci Technol 54:583–590

    Article  CAS  Google Scholar 

  • Lockwood SF, Mason RP (2008) Use of carotenoids and or carotenoid derivatives analogs for reduction/inhibition of certain negative effects of COX inhibitors. USA Patent 2008/0293679

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  Google Scholar 

  • Lu Q, Li H, Zou Y, Liu H, Yang L (2021) Astaxanthin as a microalgal metabolite for aquaculture: A review on the synthetic mechanisms, production techniques, and practical application. Algal Res 54:102178

    Article  Google Scholar 

  • Lucia M, Obraztsova I, Cordero BF, Vargas AM, Weiss A, Gutsche B, Johannisbauer W, Rodriguez H (2013) Efficient astaxanthin production strains derived from Haematococcus pluvialis. USA Patent 2013/8404468

  • Machado FRS, Trevisol TC, Boschetto DL, Burkert JFM, Ferreira SRS, Oliveira JV, Burkert CA, Andre CV (2016) Technological process for cell disruption, extraction and encapsulation of astaxanthin from Haematococcus pluvialis. J Biotechnol 218:108–114

    Article  CAS  Google Scholar 

  • Machmudah S, Shotipruk A, Goto M, Sasaki M, Hirose T (2006) Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Ind Eng Chem Res 45:3652–3657

    Article  CAS  Google Scholar 

  • Maliwat GC, Velasquez S, Robil JL, Chan M, Traifalgar RF, Tayamen M, Ragaza JA (2017) Growth and immune response of giant freshwater prawn Macrobrachium rosenbergii (De Man) postlarvae fed diets containing Chlorella vulgaris (Beijerinck). Aquac Res 48:1666–1676

    Article  CAS  Google Scholar 

  • Mao X, Wu T, Sun D, Zhang Z, Chen F (2018) Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour Technol 249:791–798

    Article  CAS  Google Scholar 

  • Maoka T (2011) Carotenoids in marine animals. Mar Drugs 9:278–293

    Article  CAS  Google Scholar 

  • Masojídek J, Torzillo G, Kopecký J, Koblizek M, Nidiaci L, Komenda J, Lukavska A, Sacchi A (2000) Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. J Appl Phycol 12:417–426

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: A review. Renew Sust Ener Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matter IA, Bui VKH, Jung M, Seo JY, Kim YE, Lee YC, Oh YK (2019) Flocculation harvesting techniques for microalgae: A review. Appl Sci 9:3069

    Article  CAS  Google Scholar 

  • Mengesha M (2013) Biophysical and the socio-economics of chicken production. Afr J Agric Res 8:1828–1836

    Google Scholar 

  • Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113:539–547

    Article  CAS  Google Scholar 

  • Milledge JJ (2013) Energy balance and techno-economic assessment of algal biofuel production systems. PhD Thesis, University of Southampton, UK 24 pp

  • Minatelli JA, Hill WS, Thomas SS, Rajendran L, Moerck RE (2013) Composition and method to alleviate joint pain. USA Patent 2013/0004582

  • Minyuk G, Chelebieva E, Chubchikova I, Dantsyuk N, Drobetskaya I, Sakhon E, Chekanov K, Solovchenko A (2017) Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids. Algae 32:245–259

    Article  CAS  Google Scholar 

  • Minyuk G, Sidorov R, Solovchenko A (2020) Effect of nitrogen source on the growth, lipid, and valuable carotenoid production in the green microalgae Chromochloris zofingiensis. J Appl Phycol 32:923–935

    Article  CAS  Google Scholar 

  • Molino A, Rimauro J, Casella P, Cerbone A, Larocca V, Chianese S, Karatza D, Mehariya S, Ferraro A, Hristoforou E, Musmarra D (2018a) Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. J Biotechnol 283:51–61

    Article  CAS  Google Scholar 

  • Molino A, Mehariya S, Iovine A, Larocca V, Sanzo GD, Martino M, Casella P, Chianese S, Musmarra D (2018b) Extraction of astaxanthin and lutein from microalga Haematococcus pluvialis in the red phase using CO2 supercritical fluid extraction technology with ethanol as co-solvent. Mar Drugs 16:432

    Article  CAS  Google Scholar 

  • Monahan P, Hiu S (2012) Agent for improving carcass performance in finishing hogs. USA Patent 2012/0253078

  • Mondal M, Ghosh A, Sharma AS, Tiwari ON, Gayen K, Mandal MK, Halder GN (2016) Mixotrophic cultivation of Chlorella sp. BTA 9031 and Chlamydomonas sp. BTA 9032 isolated from coal field using various carbon sources for biodiesel production. Energy Convers Manag 124:297–304

    Article  CAS  Google Scholar 

  • Mularczyk M, Michalak I, Marycz K (2020) Astaxanthin and other nutrients from Haematococcus pluvialis: Multifunctional applications. Mar Drugs 18:459

    Article  CAS  Google Scholar 

  • Mulders KJM, Weesepoel Y, Bodenes P, Lamers PP, Vincken JP, Martens DE, Gruppen H, Wijffels RH (2015) Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: A carotenoid metabolism study. J Appl Phycol 27:125–140

    Article  CAS  Google Scholar 

  • Naito Y, Takahashi J, Aoi W (2015) Gene expression regulating agent. USA Patent 2015/0057365

  • Ng QX, De Deyn MLZQ, Loke W, Foo NX, Chan HW, Yeo WS (2021) Effects of astaxanthin supplementation on skin health: A systematic review of clinical studies. J Diet Suppl 18:169–182

    Article  CAS  Google Scholar 

  • Nguyen NV, Khanh TV, Hai PD (2014) Study on development of formulated feed for improving growth and pigmentation of koi carp (Cyprinus carpio L., 1758) juveniles. J Life Sci 8:433–441

    CAS  Google Scholar 

  • Niu J, Tian LX, Liu YJ, Yang HJ, Ye CX, Gao W, Mai KS (2009) Effect of dietary astaxanthin on growth, survival, and stress tolerance of postlarval shrimp, Litopenaeus vannamei. J World Aquac Soc 40:795–802

    Article  Google Scholar 

  • Niu J, Wen H, Li CH, Liu YJ, Tian LX, Chen X, Huang Z, Lin HZ (2014) Comparison effect of dietary astaxanthin and β-carotene in the presence and absence of cholesterol supplementation on growth performance, antioxidant capacity and gene expression of Penaeus monodon under normoxia and hypoxia condition. Aquaculture 422–423:8–17

    Article  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  • Omshi AH, Bahri A, Khara H, Mohammadizadeh F (2019) The effects of lucantin red, yellow and astaxanthin on growth, hematological, immunological parameters and coloration in the Tiger Oscar (Astronotus ocellatus, Agassiz, 1831). Iran J Fish Sci 18:798–811

    Google Scholar 

  • Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556

    Article  CAS  Google Scholar 

  • Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085

    Article  CAS  Google Scholar 

  • Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190

    Article  Google Scholar 

  • Pappas AC, Acamovic T, Sparks NHC, Surai PF, McDevitt RM (2005) Effects of supplementing broiler breeder diets with organic selenium and polyunsaturated fatty acids on egg quality during storage. Poult Sci 84:865–874

    Article  CAS  Google Scholar 

  • Park KK, Park HY, Jung YC, Lee ES, Yang S, Im BS, Kim CZ (2005) Effects of fermented food waste feeds on pork carcass and meat quality properties. Korean J Food Sci Technol 37:38–43

    CAS  Google Scholar 

  • Pena-Saldarriaga LM, Fernández-López J, Pérez-Alvarez JA (2020) Quality of chicken fat byproducts: Lipid profile and colour properties. Foods 9:1046

    Article  CAS  Google Scholar 

  • Peng J, Yuan JP, Wang JH (2012) Effect of diets supplemented with different sources of astaxanthin on the gonad of the sea urchin Anthocidaris crassispina. Nutrients 4:922–934

    Article  CAS  Google Scholar 

  • Pereira L (2021) Macroalgae. Encyclopedia 1:177–188

    Article  Google Scholar 

  • Pertiwi H, Mahendra MYN, Kamaludeen J (2022) Astaxanthin as a potential antioxidant to improve health and production performance of broiler chicken. Vet Med Int 2022:4919442

    Article  Google Scholar 

  • Petit H, Nègre-Sadargues G, Castillo R, Trilles JP (1997) The effects of dietary astaxanthin on growth and moulting cycle of postlarval stages of the prawn, Penaeus japonicus (Crustacea, Decapoda). Comp Biochem Physiol A 117:539–544

    Article  Google Scholar 

  • Pirastru L, Darwish M, Chu FL, Perreault F, Sirois L, Popovic R (2012) Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment. J Appl Phycol 24:117–124

    Article  CAS  Google Scholar 

  • Polaris Market Research (2021) Astaxanthin market share, size, trends, industry analysis report, by source (natural [yeast, krill/shrimp, microalgae], synthetic); by product (dried algae meal or biomass, oil, softgel, liquid); by application (nutraceuticals, cosmetics, aquaculture & animal feed); by regions; segment forecast, 2021–2028. https://www.polarismarketresearch.com/industry-analysis/astaxanthin-market; Accessed March 2021

  • Poonkum W, Powtongsook S, Pavasant P (2015) Astaxanthin induction in microalga Haematococcus pluvialis with flat panel airlift photobioreactors under indoor and outdoor conditions. Prep Biochem Biotechnol 45:1–17

    Article  CAS  Google Scholar 

  • Powtongsook S, Nootong K (2019) Photoautotrophic cultivation of Chlorococcum humicola in stirred tank and airlift photobioreactors under different light settings and light supplying strategies for biomass and carotenoid production. J Chem Technol Biotechnol 94:3084–3094

    Article  CAS  Google Scholar 

  • Prabhakaran M, Elumalai S, Santhose BI, Kanna GR (2014) Collection, isolation and identification of Haematococcus pluvialis Flotow from high altitude region of Pithoragarh district, Uttarakhand, India. Gold Res Thoughts 3:1–7

    Google Scholar 

  • Praveenkumar R, Lee J, Vijayan D, Lee SY, Lee K, Sim SJ, Hong ME, Kim YE, Oh YK (2020) Morphological change and cell disruption of Haematococcus pluvialis cyst during high-pressure homogenization for astaxanthin recovery. Appl Sci 10:513

    Article  CAS  Google Scholar 

  • Pribyl P, Cepak V, Kastanek P, Zachleder V (2015) Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res 11:22–27

    Article  Google Scholar 

  • Přibyl P, Pilný J, Cepák V, Kaštánek P (2016) The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. Algal Res 16:69–75

    Article  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae – A review. J Algal Biomass Util 3:89–100

    Google Scholar 

  • Prochazkova L, Remias D, Rezanka T, Nedbalova L (2018) Chloromonas nivalis sub sp. tatrae, sub sp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the high tatra mountains (Slovakia). Fottea (praha) 18:1–18

    Article  Google Scholar 

  • Putri DS, Sari DA, Zuhdia LD (2020) Flocculants optimization in harvesting freshwater microalgae Haematococcus pluvialis. J Kim Ris 5:49–54

    Google Scholar 

  • Qin S, Liu GX, Hu ZY (2008) The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem 43:795–802

    Article  CAS  Google Scholar 

  • Qureshi MA, Garlich JD, Kidd MT (1996) Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens. Immuno Pharmacol Immunotoxicol 18:465–476

    Article  CAS  Google Scholar 

  • Qvyjt F (2010) Encapsulates. USA Patent 2010/0158984

  • Radhakrishnan S, Bhavan PS, Seenivasan C, Shanthim R, Poongodi R (2014) Influence of medicinal herbs (Alteranthera sessilis, Eclipta alba and Cissus quadrangularis) on growth and biochemical parameters of the freshwater prawn Macrobrachium rosenbergii. Aquac Int 22:551–572

    Article  CAS  Google Scholar 

  • Rajkumar R, Yaakob Z (2013) The biology of microalgae. In: Bux F (ed) Biotechnological Applications of Microalgae: Biodiesel and Value Added Product. CRC Press, New York, pp 7–16

    Chapter  Google Scholar 

  • Raju MVLN, Rao SVR, Radhika K, Chawak MM (2004) Effects of Spirulina platensis or furazolidone on the performance and immune response of broiler chickens fed with aflatoxin contaminated diet. Indian J Anim Nutr 21:40–44

    CAS  Google Scholar 

  • Raman R, Mohamad SE (2012) Astaxanthin production by freshwater microalgae Chlorella sorokiniana and marine microalgae Tetraselmis sp. Pak J Biol Sci 15:1182–1186

    Article  Google Scholar 

  • Ranga Rao A, Sarada R, Ravishankar GA (2007) Stabilization of astaxanthin in edible oils and its use as an antioxidant. J Sci Food Agric 87:957–965

    Article  Google Scholar 

  • Ranga Rao A, Sarada R, Baskaran V, Ravishankar GA (2009) Identification of carotenoids from green alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and their antioxidant properties. J Microbiol Biotechnol l19:1333–1341

  • Ranga Rao A, Reddy RRL, Baskaran V, Sarada R, Ravishankar GA (2010) Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. J Agric Food Chem 58:8553–8559

    Article  CAS  Google Scholar 

  • Ranga Rao A (2011) Production of astaxanthin from cultured green alga Haematococcus pluvialis and its biological activities. PhD thesis, University of Mysore, India

  • Ranga Rao A, Sindhuja HN, Dharmesh SM, Sankar KU, Sarada R, Ravishankar GA (2013a) Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from green alga Haematococcus pluvialis. J Agric Food Chem 61:3842–3851

    Article  Google Scholar 

  • Ranga Rao A, Baskaran V, Sarada R, Ravishankar GA (2013b) In vivo bioavailability and antioxidant activity of carotenoids from micro algal biomass - A repeated dose study. Int Food Res J 54:711–717

    Article  CAS  Google Scholar 

  • Ranga Rao A, Phang SM, Sarada R, Ravishankar GA (2014) Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications - A review. Mar Drugs 12:128–152

    Article  Google Scholar 

  • Ranga Rao A, Gogisetty D, Ravishankar GA, Sarada R, Bikkina PN, Su Y, Lei B (2017) Botryococcus as an alternative source of carotenoids and its possible applications - An overview. Crit Rev Biotechnol 138:541–558

  • Ranga Rao A, Gogisetty D, Ravishankar GA, Sarada R, Bikkina PN, Bo L, Yuepeng S (2019) Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Crit Rev Food Sci Nutr 59:1880–1902

    Article  Google Scholar 

  • Raposo MFJ, Morais AMMB, Morais RMSC (2012) Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass. World J Microbiol Biotechnol 28:1253–1257

    Article  CAS  Google Scholar 

  • Ravishankar GA, Ranga Rao A (eds) (2019a) Handbook of algal technologies and phytochemicals: Volume I: Food, health and nutraceutical applications. CRC Press, Boca Raton p 332

  • Ravishankar GA, Ranga Rao A (eds) (2019b) Handbook of algal technologies and phytochemicals: Volume II: Phycoremediation, biofuels and global biomass production. CRC Press, Boca Raton p 317

  • Ravishankar GA, Ranga Rao A (eds) (2021) Global perspectives on Astaxanthin. From industrial production to food, health, and pharmaceutical applications. Academic Press, NY p 824

  • Řezanka T, Nedbalová L, Sigler K, Cepák V (2008) Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Phytochemistry 69:479–490

    Article  Google Scholar 

  • Řezanka T, Nedbalová L, Kolouchová I, Sigler K (2013) LC-MS/APCI identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers. Phytochemistry 88:34–42

    Article  Google Scholar 

  • Riccio G, Lauritano C (2020) Microalgae with immunomodulatory activities. Mar Drugs 18:2

    Article  CAS  Google Scholar 

  • Río ED, Acién FG, García-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91:808–815

    Article  Google Scholar 

  • Rodríguez-Sifuentes L, Marszalek JE, Hernández-Carbajal G, Chuck-Hernández C (2021) Importance of downstream processing of natural astaxanthin for pharmaceutical application. Front Chem Eng 2:601483

    Article  Google Scholar 

  • Roy SS, Pal R (2015) Microalgae in aquaculture: A review with special references to nutritional value and fish dietetics. Proc Zool Soc 68:1–8

    Article  Google Scholar 

  • Ruiz-Dominguez MC, Espinosa C, Paredes A, Palma J, Jaime C, Vilchez C, Cerezal P (2019) Determining the potential of Haematococcus pluvialis oleoresin as a rich source of antioxidants. Molecules 24:4073

    Article  CAS  Google Scholar 

  • Sadraddin AA, Hasan BR, Mahmood SS, MohiAlddin N, Rashid RM, Namiq K (2019) Biological and health impact of astaxanthin powders in common carp Cyprinus carpio L. Omni-Akuatica 15:52–59

    Article  Google Scholar 

  • Saez PJ, Abdel-Aal ESM, Bureau DP (2014) Feeding increasing level of corn gluten meal induces suboptimal muscle pigmentation of rainbow trout (Oncorhynchus mykiss). Aquac Res 47:1972–1983

    Article  Google Scholar 

  • Safi C, Zebib B, Merah O, Pontalier PY, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew Sust Energ Rev 35:265–278

    Article  Google Scholar 

  • Sahin S, Nasir NTBM, Erken I, Cakmak ZE, Cakmak T (2019) Antioxidant composite films with chitosan and carotenoid extract from Chlorella vulgaris: Optimization of ultrasonic-assisted extraction of carotenoids and surface characterization of chitosan films. Mater Res Express 6:095404

    Article  CAS  Google Scholar 

  • Saleh NE, Wassef EA, Shalaby SM (2018) The role of dietary astaxanthin in European sea bass (Dicentrarchus labrax) growth, immunity, antioxidant competence and stress tolerance. Egypt J Aquat Biol Fish 22:189–200

    Article  Google Scholar 

  • Sarada R, Tripathi U, Ravishankar GA (2002) Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem 37:623–627

    Article  CAS  Google Scholar 

  • Sathasivam R, Radhakrishnan R, Hashem A, Abd-Allah EF (2019) Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci 26:709–722

    Article  CAS  Google Scholar 

  • Satoh A, Tsuji S (2009) Method for improving cognitive performance. USA Patent 2009/0297492

  • Sawanboonchun J, Roy WJ, Robertson DA, Bell JG (2008) The impact of dietary supplementation with astaxanthin on egg quality in Atlantic cod broodstock (Gadus morhua, L.). Aquaculture 283:97–101

    Article  CAS  Google Scholar 

  • Schiavone A, Chiarini R, Marzoni M, Castillo A, Tassone S, Romboli I (2007) Breast meat traits of Muscovy ducks fed on a microalga (Crypthecodinium cohnii) meal supplemented diet. Br Poult Sci 48:573–579

    Article  CAS  Google Scholar 

  • Senin P, Setnikar I, Rovati LA (2009) Formulation for oral administration with beneficial effects on the cardiovascular system. USA Patent 2009/0136469

  • Shah MMR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Front Plant Sci 7:1–28

    Article  Google Scholar 

  • Shah MMR, Lutzu GA, Alam MA, Sarker P, Chowdhury MAK, Parsaeimehr A, Liang Y, Daroch M (2018) Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol 30:197–213

    Article  Google Scholar 

  • Sharoni Y, Levy J, Sela Y, Nir Z (2009) Carotenoid oxidation products as chemopreventive and chemotherapeutic agents. USA Patent 2009/0069417

  • Sheikhzadeh N, Panchah IK, Asadpour R, Tayefi-Nasrabadi H, Mahmoudi H (2012a) Effects of Haematococcus pluvialis in maternal diet on reproductive performance and egg quality in rainbow trout (Oncorhynchus mykiss). Anim Reprod Sci 130:119–123

    Article  Google Scholar 

  • Sheikhzadeh N, Tayefi-Nasrabadi H, Oushani AK, Enferadi MHN (2012b) Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 38:413–419

    Article  CAS  Google Scholar 

  • Shepherd SL (2021) Method of using astaxanthin for the treatment of diseases, and more particularly, the treatment of cancer. USA Patent 2021/11065269

  • Shi K, Su F, Guo W, Hu FW, Pang T, Gao Z, Liu JG (2017) Application of Haematococcus pluvialis residues in the adult rainbow trout culture. Jiangsu Agric Sci 45:153–157

    Google Scholar 

  • Shu G, Khalid N, Chen Z, Neves MA, Barrow CJ, Nakajima M (2018) Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers. Food Chem 255:67–74

    Article  CAS  Google Scholar 

  • Simat V, Rathod NB, Cagalj M, Hamed I, Generalic MI (2022) Astaxanthin from crustaceans and their byproducts: A bioactive metabolite candidate for therapeutic application. Mar Drugs 20:206

    Article  CAS  Google Scholar 

  • Simsek GK, Cetin AK (2017) Effect of different wavelengths of light on growth, pigment content and protein amount of Chlorella vulgaris. Fresenius Environ Bull 26:7974–7980

    Google Scholar 

  • Singh R, Paliwal C, Nesamma AA, Narula A, Jutur PP (2020) Nutrient deprivation mobilizes the production of unique tocopherols as a stress-promoting response in a new indigenous isolate Monoraphidium sp. Front Mar Sci 7:575817

    Article  Google Scholar 

  • Solovchenko AE (2013) Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russ J Plant Physiol 60:1–13

    Article  CAS  Google Scholar 

  • Sommer TR, Potts WT, Morrissy NM (1991) Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture 94:79–88

    Article  CAS  Google Scholar 

  • Sommer TR, D’Souza FML, Morrissy NM (1992) Pigmentation of adult rainbow trout, Oncorhynchus mykiss, using the green alga Haematococcus pluvialis. Aquaculture 106:63–74

    Article  Google Scholar 

  • Soto L, Kulkarni S, Woodard SL, Nikolov ZL (2020) Processing of permeabilized Chlorella vulgaris biomass into lutein and protein-rich products. J Appl Phycol 32:1697–1707

    Article  Google Scholar 

  • Soto-Ramírez R, Tavernini L, Zúñiga H, Poirrier P, Chamy R (2021) Study of microalgal behavior in continuous culture using photosynthetic rate curves: The case of chlorophyll and carotenoid production by Chlorella vulgaris. Aquac Res 52:3639–3648

    Article  Google Scholar 

  • Soya H, Yook J (2020) Carotenoid-containing cognitive function improving composition for use in exercise therapy for improving cognitive function. USA Patent 2020/0060993

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Storebakken T, Sørensen M, Bjerkeng B, Hiu S (2004) Utilization of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, in rainbow trout, Oncorhynchus mykiss: Effects of enzymatic cell wall disruption and feed extrusion temperature. Aquaculture 236:391–403

    Article  CAS  Google Scholar 

  • Suhnel S, Squella FJ, Schleder DD, Rupp GS, Magalhaes ARM, Maraschin M (2015) Effects of astaxanthin on spawning performance of the scallop Nodipecten nodosus (Linnaeus, 1759). Bol Inst Pesca, São Paulo 41:345–354

    CAS  Google Scholar 

  • Sun N, Wang Y, Li YT, Huang JC, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  • Sun T, Yin R, Magnuson AD, Tolba SA, Liu G, Lei XG (2018) Dose-dependent enrichments and improved redox status in tissues of broiler chicks under heat stress by dietary supplemental microalgal astaxanthin. J Agric Food Chem 66:5521–5530

    Article  CAS  Google Scholar 

  • Swiatkiewicz S, Arczewska-wlosek A, Jozefiak D (2015) Application of microalgae biomass in poultry nutrition. World Poult Sci J 71:663–672

    Article  Google Scholar 

  • Tacon AGJ (1993) Feed formulation and on-farm feed management. In: Tacon AGJ, Csavas I (eds.) Farm-made Aquafeeds, Proceedings of the FAO/AADCP Regional Expert Consultation on Farm-Made Aquafeeds. FAO-RAPA/AADCP, Bangkok, pp 61–74

  • Takahashi J, Yamashita E, Fukamauchi M, Tanaka I (2009) Composition for body fat reduction. USA Patent 2009/0047304

  • Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho SH, Show PL (2020) A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11:116–129

    Article  CAS  Google Scholar 

  • Tan Y, Ye Z, Wang M, Manzoor MF, Aadil RM, Tan X, Liu Z (2021) Comparison of different methods for extracting the astaxanthin from Haematococcus pluvialis: Chemical composition and biological activity. Molecules 26:3569

    Article  CAS  Google Scholar 

  • Terao J (1989) Antioxidant activity of β-carotene-related carotenoids in solution. Lipids 24:659–661

    Article  CAS  Google Scholar 

  • Thapa P (2020) Application of microalgae in poultry nutrition: A review. J Agric Nat Res 3:241–256

    Article  Google Scholar 

  • Tharek A, Mohamad SE, Iwamoto K, Suzuki I, Hara H, Dolah R, Yoshizaki S, Jamaluddin H, Salleh MM, Yahya A (2020) Enhanced astaxanthin production by oxidative stress using methyl viologen as a reactive oxygen species (ROS) reagent in green microalgae Coelastrum sp. Indones J Biotechnol 25:95–101

    Article  Google Scholar 

  • Tizkar B, Kazemi R, Alipour A, Seidavi A, Naseralavi G, Ponce-Palafox J (2015) Effects of dietary supplementation with astaxanthin and β-carotene on the semen quality of goldfish (Carassius auratus). Theriogenology 84:1111–1117

    Article  CAS  Google Scholar 

  • Tolasa S, Cakli S, Ostermeyer U (2005) Determination of astaxanthin and canthaxanthin in salmonid. Eur Food Res Technol 221:787–791

    Article  CAS  Google Scholar 

  • Tomaselli L (2004) The microalgal cell. In: Richmond A (ed) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell, Oxford, pp 1–19

    Google Scholar 

  • Tominaga K, Karato M, Hongo N, Yamashita E (2010) Method of preventing discoloration of carotenoid pigment and container used therefor. USA Patent 2010/0204523

  • Trichet VV, Amaya E (2022) Astaxanthin use as carotenoid source and its benefits in feeds. In: Davis A (ed) Feed and Feeding Practices in Aquaculture. Woodhead Publishing UK, pp. 309–335.

  • Tsuji S, Shirasawa T, Shimizu T (2007) Neurocyte protective agent. USA Patent 2007/0293568

  • Udayan A, Muthu A, Pandey A (2017) Nutraceuticals from algae and cyanobacteria. Algal Green Chem 2017:65–89

    Article  Google Scholar 

  • Ulaiwi GH, Al-Khafaji FRA (2020) The effectiveness of astaxanthin added to the diet for improving productive efficiency, traits for broiler chickens exposed to oxidative stress. Plant Arch 20:1661–1666

    Google Scholar 

  • Vechtel B, Kallmann U, Ruppel HG (1992) Secondary carotenoids of Eremosphaera viridis De Bary (Chlorophyceae) under nitrogen deficiency. Bot Acta 105:219–222

    Article  CAS  Google Scholar 

  • Walker LA, Wang T, Xin H, Dolde D (2012) Supplementation of laying-hen feed with palm tocos and algae astaxanthin for egg yolk nutrient enrichment. J Agric Food Chem 60:1989–1999

    Article  CAS  Google Scholar 

  • Wan M, Zhang J, Hou D, Fan J, Li Y, Huang J, Wang J (2014) The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light – Dark cyclic cultivation. Bioresour Technol 167:276–283

    Article  CAS  Google Scholar 

  • Wang Y, Peng J (2008) Growth associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chlorophyta). World J Microbiol Biotechnol 24:1915–1922

    Article  CAS  Google Scholar 

  • Wang Z, Cai CF, Cao XM, Zhu JM, He J, Wu P, Ye Y (2018) Supplementation of dietary astaxanthin alleviated oxidative damage induced by chronic high pH stress, and enhanced carapace astaxanthin concentration of Chinese mitten crab Eriocheir sinensis. Aquaculture 483:230–237

    Article  CAS  Google Scholar 

  • Wannachod T, Wannasutthiwat S, Powtongsook S, Nootong K (2018) Photoautotrophic cultivating options of freshwater green microalgal Chlorococcum humicola for biomass and carotenoids production. Prep Biochem Biotechnol 48:335–342

    Article  CAS  Google Scholar 

  • Wayama M, Ota S, Matsuura H, Nango N, Hirata A, Kawano S (2013) Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One 8:53618

    Article  Google Scholar 

  • Wolkers H, Barbosa MJ, Kleinegris DMM, Bosma R, Wijffels RH, Harmsen PFH (2011) Microalgae: The green gold of the future?: Large-scale sustainable cultivation of microalgae for the production of bulk commodities. Wageningen UR - Food & Biobased Research ,Wageningen p 34

  • Wouters R, Lavens P, Nieto J, Sorgeloos P (2001) Penaeid shrimp broodstock nutrition: An updated review on research and development. Aquaculture 202:1–21

    Article  Google Scholar 

  • Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res (Thessaloniki) 21:1–6

    Google Scholar 

  • Yadav S, Bansal S, Chaithra ML, Sibi G (2020) Assessment of optimal growth conditions for specific carotenoids production by Chlorella vulgaris. J Nat Appl Sci 12:550–555

    Article  Google Scholar 

  • Yadavalli R, Ratnapuram H, Peasari JR, Reddy CN, Ashokkumar V, Kuppam C (2021) Simultaneous production of astaxanthin and lipids from Chlorella sorokiniana in the presence of reactive oxygen species: A biorefinery approach. Biomass Convers Biorefin 12:881–889

    Article  Google Scholar 

  • Yamada S, Tanaka Y, Sameshima M, Ito Y (1990) Pigmentation of prawn (Penaeus japonicus) with carotenoids: 1. Effect of dietary astaxanthin, β-carotene and canthaxanthin on pigmentation. Aquaculture 87:323–330

    Article  CAS  Google Scholar 

  • Yamamoto M, Kurihara I, Kawano S (2005) Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta 221:766–775

    Article  CAS  Google Scholar 

  • Yang C, Zhang H, Liu R, Zhu H, Zhang L, Tsao R (2017) Bio-accessibility, cellular uptake, and transport of astaxanthin isomers and their antioxidative effects in human intestinal epithelial caco-2 cells. J Agric Food Chem 65:10223–10232

    Article  CAS  Google Scholar 

  • Yang YX, Kim YJ, Jin Z, Lohakare JD, Kim CH, Ohh SH, Lee SH, Choi JY, Chae BJ (2006) Effects of dietary supplementation of astaxanthin on production performance, egg quality in layers and meat quality in finishing pigs. Anim Biosci 19:1019–1025

    CAS  Google Scholar 

  • Yasir I, Qin JG (2010) Effects of dietary carotenoids on skin color and pigments of false clownfish Amphiprion ocellaris, Cuvier. J World Aquac Soc 41:308–318

    Article  Google Scholar 

  • Ye Z, Tan XH, Liu ZW, Aadil RM, Tan YC, Inam-ur-Raheem M (2020) Mechanisms of breakdown of Haematococcus pluvialis cell wall by ionic liquids, hydrochloric acid and multi-enzyme treatment. Int J Food Sci Technol 55:3182–3189

    Article  CAS  Google Scholar 

  • Yee W (2016) Microalgae from the Selenastraceae as emerging candidates for biodiesel production: A mini review. World J Microbiol Biotechnol 32:64

    Article  Google Scholar 

  • Young AJ, Pritchard J, White D, Davies S (2017) Processing of astaxanthin-rich Haematococcus cells for dietary inclusion and optimal pigmentation in Rainbow trout, Oncorhynchus mykiss L. Aquacult Nutr 23:1304–1311

    Article  CAS  Google Scholar 

  • Yu W, Liu J (2019) Astaxanthin isomers: Selective distribution and isomerization in aquatic animals. Aquaculture 520:734915

    Article  Google Scholar 

  • Yuan JP, Chen F, Liu X, Li XZ (2002) Carotenoid composition in the green microalga Chlorococcum. Food Chem 76:319–325

    Article  CAS  Google Scholar 

  • Zgheib N, Saade R, Khallouf R, Takache H (2018) Extraction of astaxanthin from microalgae: Process design and economic feasibility study. Conf Ser: Mater Sci Eng 323:012011

    Google Scholar 

  • Zhang C, Jin Y, Yu Y, Xiang J, Li F (2021) Effects of natural astaxanthin from microalgae and chemically synthetic astaxanthin supplementation on two different varieties of the ridgetail white prawn (Exopalaemon carinicauda). Algal Res 57:102347

    Article  Google Scholar 

  • Zhang DH, Lee YK (1997) Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. J Appl Phycol 9:459–463

    Article  CAS  Google Scholar 

  • Zhang Z, Huang JJ, Sun D, Lee Y, Chen F (2016) Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP). Bioresour Technol 224:515–522

    Article  Google Scholar 

  • Zhangli H, Dengfeng X, Ze L, Bin J, Yihong Z, Jiancheng L (2019) Prawn feed containing Haematococcus pluvialis and applications of prawn feed. China Patent 2019/110583904

  • Zhao X, Fu L, Liu D, Zhu H, Wang X, Bi Y (2016a) Magnetic-field-assisted extraction of astaxanthin from Haematococcus pluvialis. J Food Process Preserv 40:463–472

    Article  CAS  Google Scholar 

  • Zhao X, Hu J, Zhang X, Li X, Leng X, Wu S, Cheng D (2016b) Effects of E/Z isomers and coating materials of astaxanthin products on the pigmentation and antioxidation of rainbow trout, Oncorhynchus mykiss. J World Aquacult Soc 47:341–351

    Article  CAS  Google Scholar 

  • Zhou Q, Xu J, Yang L, Gu C, Xue C (2019) Thermal stability and oral absorbability of astaxanthin esters from Haematococcus pluvialis in Balb/c Mice. J Sci Food Agric 99:3662–3671

    Article  CAS  Google Scholar 

  • Zhu XM, Li MY, Liu XY, Xia CG, Niu XT, Wang GQ, Zhang DM (2020) Effects of dietary astaxanthin on growth, blood biochemistry, antioxidant, immune and inflammatory response in lipopolysaccharide-challenged Channa argus. Aquac Res 51:1980–1991

    Article  CAS  Google Scholar 

  • Zhu Y, Yin L, Ge J, Wu X, Peng Y, Zhang T, Jiang M (2021) Astaxanthin supplementation enriches productive performance, physiological and immunological responses in laying hens. Anim Biosci 34:443–448

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JRR and SK are grateful to Professor Dr. Md. Mahfuzul Haque, former Dean, Faculty of Fisheries, Bangladesh Agricultural University for providing useful advices during the preparation of the manuscript. SK acknowledges the Ministry of Education (Project no. 2020/12/MoE), Bangladesh for the support of funding. ARR acknowledge fund for Improvement of Science & Technology Infrastructure in Higher Educational Institutions (FIST Project no: LSI-576/2013), Department of Science and Technology, Government of India and Centre of Excellence, Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research for the support and resources. GAR thanks Dr Premachandra Sagar, Vice Chairman of Dayanada Sagar Institutions for the encouragement in the preparation of this manuscript.

Funding

This study was supported by the Ministry of Education (MoE), Bangladesh (2020/12/MoE) to the corresponding author (Saleha Khan) which is gratefully acknowledged. 

Author information

Authors and Affiliations

Authors

Contributions

JRR, SK, RRA and MS prepared the original draft; RAG and SK reviewed and edited the manuscript. All authors agreed for the submission of manuscript.

Corresponding authors

Correspondence to Ranga Rao Ambati or Saleha Khan.

Ethics declarations

Conflicts of interest

The authors have declared no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritu, J.R., Ambati, R.R., Ravishankar, G.A. et al. Utilization of astaxanthin from microalgae and carotenoid rich algal biomass as a feed supplement in aquaculture and poultry industry: An overview. J Appl Phycol 35, 145–171 (2023). https://doi.org/10.1007/s10811-022-02817-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02817-9

Keyword

Navigation