Skip to main content

Advertisement

Log in

Effect of nitrogen source on the growth, lipid, and valuable carotenoid production in the green microalga Chromochloris zofingiensis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Chromochloris (Chlorella) zofingiensis (Dönz) Fucíková & Lewis is a carotenogenic chlorophyte producing valuable carotenoids such as astaxanthin and canthaxanthin. Due to a high culture robustness, it has a potential to become a major biotechnological source of natural carotenoid pigments in the nearest future. To the best of our knowledge, this is the first report on the comparative assessment of the biomass, carotenoid, and lipid productivity of C. zofingiensis monoculture under the condition of the two-stage batch cultivation with acetate supplementation. The results proved the feasibility of complete replacement of sodium nitrate by urea in the nutrient medium for C. zofingiensis. Carotenoids (0.3% of dry cell weight) and their composition, as well as the cell lipids and their fatty acid profile, were not affected significantly during the cultivation on urea-containing media as compared to the cultivation on standard media containing nitrate. The carotenoid profile of C. zofingiensis was dominated by the valuable ketocarotenoids astaxanthin, canthaxanthin, and adonixanthin. Furthermore, the use of urea as the sole N source increased the gross yield of lipids by 30.6% as compared to that achieved on the nitrate-based medium. The fatty acid composition of the resulting lipids was compatible with the current European biodiesel standard. The cost efficiency of C. zofingiensis cultivation can be increased by replacing nitrate with urea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Becker E (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Melbourne

    Google Scholar 

  • Bekheet I, Syrett P (1979) The uptake of urea by Chlorella. New Phytol 82:179–186

    CAS  Google Scholar 

  • Benavente-Valdés JR, Aguilar C, Contreras-Esquivel JC, Méndez-Zavala A, Montañez J (2016) Strategies to enhance the production of photosynthetic pigments and lipids in Chlorophycae species. Biotechnol Rep 10:117–125

    Google Scholar 

  • Bligh E, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Physiol Pharmacol 37:911–917

    CAS  Google Scholar 

  • Bold H (1942) The cultivation of algae. Bot Rev 8:69–138

    Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    CAS  Google Scholar 

  • Chelebieva E, Minyuk G, Chubchikova I (2013a) Features of secondary carotenogenesis in green microalgae Scenedesmus rubescens (Dangeard) Kessler et al. in a two-stage batch culture. Sci Notes Taurian Natnl Univ 26:175–187

    Google Scholar 

  • Chelebieva E, Minyuk G, Drobetskaya I, Chubchikova I (2013b) Physiological and biochemical characteristics of Ettlia carotinosa Komárek 1989 (Chlorophyceae) under experimental stress condition. Mors'kyi Ekolohichnyi Zhurnal (Mar Ecol) 12:78–87

    Google Scholar 

  • Chen J-H, Liu L, Wei D (2017) Enhanced production of astaxanthin by Chromochloris zofingiensis in a microplate-based culture system under high light irradiation. Bioresour Technol 245:518–529

    CAS  PubMed  Google Scholar 

  • Chen T, Wang Y (2013) Optimized astaxanthin production in Chlorella zofingiensis under dark condition by response surface methodology. Food Sci Biotechnol 22:1–8

    Google Scholar 

  • Chubchikova I, Drobetskaya I, Minyuk G, Dantsyuk N, Chelebieva E (2011) Screening of green microalgae as potential source of nature ketocarotenoids. 2. Features of growth and secondary carotenogenesis in the representatives of the genus Bracteacoccus (Chlorophyceae). Mar Ecol J 10:91–97

    Google Scholar 

  • Dantsyuk N (2010) Effect of sodium acetate on intensity of secondary carotenogenesis of green microalgae Haematococcus pluvialis. Mar Ecol J 80:44

    Google Scholar 

  • Dhup S, Kannan DC, Dhawan V (2016) Understanding urea assimilation and its effect on lipid production and fatty acid composition of Scenedesmus sp. SOJ Biochem. https://doi.org/10.15226/2376-4589/2/1/00108

  • Fábregas J, Otero A, Maseda A, Domínguez A (2001) Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J Biotechnol 89:65–71

    PubMed  Google Scholar 

  • Feng P, Deng Z, Fan L, Hu Z (2012) Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J Biosci Bioeng 114:405–410

    CAS  PubMed  Google Scholar 

  • Fucikova K, Lewis LA (2012) Intersection of Chlorella, Muriella and Bracteacoccus: resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea 12:83–93

    Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specidications. Renw Sust Energy Rev 16:143–169

  • Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    CAS  PubMed  Google Scholar 

  • Huang J-C, Wang Y, Sandmann G, Chen F (2006) Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 71:473–479

    CAS  PubMed  Google Scholar 

  • Huo S et al. (2018) Biomass accumulation of Chlorella zofingiensis G1 cultures grown outdoors in photobioreactors. Front Energy Res 6 doi:https://doi.org/10.3389/fenrg.2018.00049

  • Islam MA, Magnusson M, Brown RJ, Ayoko GA, Nabi MN, Heimann K (2013) Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies 6:5676–5702

    Google Scholar 

  • Jiang X, Liu L, Chen J, Wei D (2018) Effects of Xanthophyllomyces dendrorhous on cell growth, lipid, and astaxanthin production of Chromochloris zofingiensis by mixed culture strategy. J Appl Phycol 30:3009–3015

    CAS  Google Scholar 

  • Karpagam R, Raj KJ, Ashokkumar B, Varalakshmi P (2015) Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: lipid enhancement methods and media optimization using response surface methodology. Bioresour Technol 188:177–184

    CAS  PubMed  Google Scholar 

  • Kim D-Y, Vijayan D, Praveenkumar R, Han JI, Lee K, Park JY, Chang WS, Lee JS, Oh YK (2016) Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour Technol 199:300–310

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Katsuragi T, Tani Y (2001) Enlarged and astaxanthin-accumulating cyst cells of the green alga Haematococcus pluvialis. J Biosci Bioeng 92:565–568

    CAS  PubMed  Google Scholar 

  • Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177

    CAS  PubMed  Google Scholar 

  • Li Y, Huang J, Sandmann G, Chen F (2009) High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (Chlorophyceae). J Phycol 45:635–641

    CAS  PubMed  Google Scholar 

  • Little L, Mah R (1970) Ammonia production in urea-grown cultures of Clorella ellipsoidea. J Phycol 6:277–280

    CAS  Google Scholar 

  • Liu J, Huang J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F (2010) Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol 101:8658–8663

    CAS  PubMed  Google Scholar 

  • Liu J, Mao X, Zhou W, Guarnieri MT (2016) Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresour Technol 214:319–327

    CAS  PubMed  Google Scholar 

  • Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25:1447–1456

    Google Scholar 

  • Mao X, Wu T, Sun D, Zhang Z, Chen F (2018) Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour Technol 249:791–798

    CAS  PubMed  Google Scholar 

  • Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546

    PubMed  PubMed Central  Google Scholar 

  • Minyuk G, Chelebieva E, Chubchikova I (2014) Secondary carotenogenesis of the green microalga Bracteacoccus minor (Chodat) Petrova (Chlorophyta) in a two-stage culture. Int J Algae 16:354–368

    Google Scholar 

  • Minyuk G et al (2017) Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids. Algae 32:245–259

    CAS  Google Scholar 

  • Minyuk G, Dantsyuk N, Chelebieva E, Chubchikova I, Drobetskaya I, Solovchenko A (2019) The effect of diverse nitrogen sources in the nutrient medium on the growth of the green microalgae Chromochloris zofingiensis in the batch culture. Mar Biol J 4:41–52

    Google Scholar 

  • Minyuk G, Terentyeva N, Drobetskaya I (2007) A comparison of characteristics of morphological-physiological and biochemical traits in three strains of Haematococcus pluvialis Flotow (Chlorophyta, Chlamydomonadales). Int J Algae 9:174–186

    CAS  Google Scholar 

  • Mulders KJM, Weesepoel Y, Bodenes P, Lamers PP, Vincken J-P, Martens DE, Gruppen H, Wijffels RH (2015a) Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J Appl Phycol 27:125–140

    CAS  Google Scholar 

  • Mulders KJM, Lamers PP, Wijffels RH, Martens DE (2015b) Dynamics of biomass composition and growth during recovery of nitrogen-starved Chromochloris zofingiensis. Appl Microbiol Biotechnol 99:1873–1884

    CAS  PubMed  Google Scholar 

  • Ozerinina O, Tsydendambaev V (2011) Effect of pre-sowing γ-irradiation of sea buckthorn seeds on the content and fatty acid composition of total lipids in the seeds of the first plant generation. Russ J Plant Physiol 58:370–374

    CAS  Google Scholar 

  • Patias LD, Fernandes AS, Petry FC, Mercadante AZ, Jacob-Lopes E, Zepka LQ (2017) Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Res Int 100:260–266

    CAS  PubMed  Google Scholar 

  • Peng J, Xiang W, Tang Q, Sun N, Chen F, Yuan J (2008) Comparative analysis of astaxanthin and its esters in the mutant E1 of Haematococcus pluvialis and other green algae by HPLC with a C30 column. Sci China C 51:1108–1115

    CAS  Google Scholar 

  • Qin L, Wang Z, Shu Q, Huo S, Zhu S, Xu J, Yuan Z (2016) Medium optimization for Chlorella zofingiensis biomass production using central composite design. Energy Sources A 38:769–776

    CAS  Google Scholar 

  • Raven JA, Giordano M (2016) Combined nitrogen. In: Borowitzka MA, Beardall J, Raven J (eds) The physiology of microalgae. Springer, Cham, pp 143–154

    Google Scholar 

  • Repeta D, Bjørnland T (1977) Preparation of carotenoids standards. In: Jeffry S, Mantoura R, Wright S (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, pp 239–260

    Google Scholar 

  • Sidorov R, Zhukov A, Vereshchagin A, Tsydendambaev V (2012) Occurrence of fatty acid lower-alkyl esters in Euonymus fruits. Russ J Plant Physiol 59:326–332

    CAS  Google Scholar 

  • Solovchenko A (2012) Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russ J Plant Physiol 59:167–176

    CAS  Google Scholar 

  • Solovchenko AE (2015) Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth Res 125:437–449

    CAS  PubMed  Google Scholar 

  • Stansell GR, Gray VM, Sym SD (2012) Microalgal fatty acid composition: implications for biodiesel quality. J Appl Phycol 24:791–801

    CAS  Google Scholar 

  • Vonshak A (1986) Laboratory techniques for cultivation of microalga. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 117–145

    Google Scholar 

  • Wang Y, Chen T (2008) The biosynthetic pathway of carotenoids in the astaxanthin-producing green alga Chlorella zofingiensis. World J Microbiol Biotechnol 24:2927–2932

    CAS  Google Scholar 

  • Wellburn A (1994) The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Wood AM, Everroad R, Wingard L (2005) Measuring growth rates in microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 269–285

    Google Scholar 

  • Zhang DH, Lee YK (2001) Two-step process for ketocarotenoid production by a green alga Chlorococcum sp. strain MA-1. Appl Microbiol Biotechnol 55:537–540

    CAS  PubMed  Google Scholar 

  • Zhang Z, Huang JJ, Sun D, Lee Y, Chen F (2017) Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP). Bioresour Technol 224:515–522

    CAS  PubMed  Google Scholar 

  • Zhao X, Jarboe L, Wen Z (2016) Utilization of pyrolytic substrate by microalga Chlamydomonas reinhardtii: cell membrane property change as a response of the substrate toxicity. Appl Microbiol Biotechnol 100:4241–4251

    CAS  PubMed  Google Scholar 

  • Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331

    CAS  Google Scholar 

Download references

Funding

Financial support was provided by the Russian Ministry of Science and Higher Education (project 075-15-2019-1719/ RFMEFI60419X0213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Solovchenko.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minyuk, G., Sidorov, R. & Solovchenko, A. Effect of nitrogen source on the growth, lipid, and valuable carotenoid production in the green microalga Chromochloris zofingiensis. J Appl Phycol 32, 923–935 (2020). https://doi.org/10.1007/s10811-020-02060-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02060-0

Keywords

Navigation