Skip to main content
Log in

Rapid isolation of culturable microalgae from a tropical shallow lake system

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae diversity is constantly being studied and explored for biotechnological uses. The shallow lake system of Lençois Maranhenses (SLLM) is a unique coastal ecosystem in northeast Brazil found interspersed in a field of sand dunes. Organisms in these tropical lakes are constantly exposed to high temperatures and solar irradiance. Yet, little is known about the diversity of culturable microalgae in this aquatic ecosystem. This study reports the use of flow cytometry with fluorescence-activated cell sorting (FACS) to isolate single microalgae cells/coenobia from five lakes in SLLM, accessing the efficiency of this isolation technique with two types of culture media. To retrieve the highest diversity of culturable microalgae, planktonic, benthic, and epiphytic samples were collected and processed by FACS. The diversity of microalgae in natural lake communities was described by morphology-based taxonomy. Isolates of the most abundant phylum established in cultures (Chlorophyta) were characterized by gene sequencing (18S rDNA). A total of 3072 microalgal cells/coenobia were sorted into 96-well plates. From these, 945 wells presented algal growth (31% success rate). Based on morphological diversity and adaptability to culture conditions, a set of 171 strains were selected to be incorporated in a culture collection. Microalgae present in the lakes belonged to six phyla, with four of them represented in the cultured strains. Our sampling strategy coupled with FACS isolation retrieved a fairly large number and diversity of microalgal strains with minimum isolation effort from a unique coastal environment. The monoclonal cultures established in this study offer new opportunities for basic and applied research on microalgae biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen RA, Kawachi M (2005) Traditional microalgae isolation techniques. In: Andersen RA (ed.) Algal culturing techniques. Academic Press, pp 83–100

  • Brodie J, Lewis J (2007) Unravelling the algae: the past, present, and future of algal systematics. CRC Press, Boca Raton 140p

  • Brussaard C, Marie D, Bratbak G (2000) Flow cytometric detection of viruses. J Virol Meth 85:175–182

    Article  CAS  Google Scholar 

  • Buchheim MA, Turmel M, Zimmer EA, Chapman RL (1990) Phylogenetic systematics of Chlamydomonas based on cladistic analysis of nuclear 18S rRNA sequence data. J Phycol 26:689–699

    Article  Google Scholar 

  • CAPES (2013) Avaliação Trienal – área: Biodiversidade. Available at: https://www.capes.gov.br/images/stories/download/avaliacaotrienal/Docs_de_area/Biodiversidade_doc_area_e_comiss%C3%A3o_block.pdf

  • Cellamare M, Rolland A, Jacquet S (2010) Flow cytometry sorting of freshwater phytoplankton. J Appl Phycol 22:87–100

    Article  Google Scholar 

  • Crosbie N, Pöckl M, Weiss T (2003) Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J Microbiol Meth 55:361–370

    Article  CAS  Google Scholar 

  • Cucci TL, Shumway SE, Newell RC, Selvin R, Guillard RRL, Yentsch CM (1985) Flow cytometry: a new method for characterization of differential ingestion, digestion and egestion by suspension feeders. Mar Ecol Prog Ser 24:201–204

    Article  Google Scholar 

  • Darienko T, Gustavs L, Eggert A, Wolf W, Pröschold T (2015) Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS One 10:e0127838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dashkova V, Malashenkov D, Poulton N, Vorobjev I, Barteneva NA (2017) Imaging flow cytometry for phytoplnkton analysis. Methods 112:188–200

    Article  PubMed  CAS  Google Scholar 

  • Doan TY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534–2544

    Article  CAS  Google Scholar 

  • Doria E, Longoni P, Scibilia L, Iazzi N, Cella R, Nielsen E (2012) Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater. J Appl Phycol 24:375–383

    Article  CAS  Google Scholar 

  • Elliot LG, Feehan C, Laurens LML, Pienkos PT, Darzins A, Posewitz MC (2012) Estabilishment of a bioenergy-focused microalgal culture collection. Algal Res Biomass Biofuel Bioprod 1:102–113

    Google Scholar 

  • Ettl H, Schlösser UG (1992) Towards a revision of the systematics of the genus Chlamydomonas (Chlorophyta). 1. Chlamydomonas applanata Pringsheim. Bot Acta 105:323–330

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fistarol GO, Salomon PS, Rosato M, Reina GG-B (2012) Production of methane using microalgae biomass from a wastewater treatment plant. Curr Top Biotechnol 7:51–60

    CAS  Google Scholar 

  • Fistarol GO, Rosato M, Thomspon FL, do Valle RAB, Reina GG-B, Salomon PS (2016a) Use of a marine microbial community as inoculum for biomethane production. Environ Technol 37:360–368

    Article  PubMed  CAS  Google Scholar 

  • Fistarol GO, Farias M, Salomon PS (2016b) Viability of using flue gases as carbon source for microalgae cultivation. Int J Green Technol 2:13–19

    Article  Google Scholar 

  • Franklin NM, Adams MS, Stauber JL, Lim RP (2001) Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch Environ Contam Toxicol 40:469–480

    Article  PubMed  CAS  Google Scholar 

  • Franqueira D, Orosa M, Torres E, Herrero C, Cid A (2000) Potential use of flow cytometry in toxicity studies with microalgae. Sci Total Environ 247:119–126

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen M, Edwards M, Richardson AJ, Halliday NC, Wanless S (2006) From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J Animal Ecol 75:1259–1268

    Article  Google Scholar 

  • Gasol JM, Giorgio PAD (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64:197–224

    Article  Google Scholar 

  • Gorham PR, McLachlan J, Hammer UT, Kim WK (1964) Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Bréb. Verh Internat Verein Limnol 15:796–804

    Google Scholar 

  • Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14

    CAS  Google Scholar 

  • Guillard RRL, Morton SL (2003) Culture methods. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO, Paris, pp 77–97

    Google Scholar 

  • Guillard RRL (2005) Purificatin methods for microalgae. In: Andersen RA (ed) Algal culturing techniques. Elsevier, New York, pp 117–132

    Google Scholar 

  • Guiry MD, Guiry GM (2018) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 07 January 2018

  • Gusmán HM, Valido AJ, Duarte LC, Presmanes KF (2010) Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquacult Int 18:189–199

    Article  CAS  Google Scholar 

  • Ho S-H, Li P-J, Liu C-C, Chang J-S (2013) Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour Technol 145:142–149

    Article  PubMed  CAS  Google Scholar 

  • Hoham RW, Bonome TA, Martin CW, Leebens-Mack JH (2002) A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J Phycol 38:1051–1064

    Article  CAS  Google Scholar 

  • Janson S, Gisselson LA, Salomon PS, Granéli E (2000) Evidence for multiple species within the parasitic dinoflagellate Amoebophrya ceratii as based on 18S gene-sequence analysis. Parasitol Res 96:929–933

    Article  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York. pp 21–132

    Chapter  Google Scholar 

  • Kalff J, Watson S (1986) Phytoplankton and its dynamics in two tropical lakes: a tropical and a temperate zone comparison. Hydrobiologia 138:161–176

    Article  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  PubMed  CAS  Google Scholar 

  • Lazoski C, Gusmão J, Boudry P, Solé-Cava AM (2011) Phylogeny and phylogeography of Atlantic oyster species: evolution history, limited genetic connectivity and isolation by distance. Mar Ecol Prog Ser 426:197–212

    Article  Google Scholar 

  • Leliaert F, Verbruggen H, Vanormelingen P, Steen F, Lopez-Bautista JM, Zuccarello GC, de Clerck O (2014) DNA-based species delimitation in algae. Eur J Phycol 49:179–196

    Article  Google Scholar 

  • Lucca JV, Albuquerque ALS, Rocha O (2008) Spatial heterogeneity and temporal hanges of abiotic factors, in Lake Caço, Maranhão state, Brazil. Acta Limnol Bras 20:89–97

    Google Scholar 

  • Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170

    Article  Google Scholar 

  • Machado ABM, Martins CS, Drummond GM (2005) Lista da Fauna Brasileira Ameaçada de Extinção: Incluindo as Espécies Quase Ameaçadas e Deficientes em Dados. Fundação Biodiversitas, Belo Horizonte, p 160

    Google Scholar 

  • Mandotra SK, Kumar P, Suseela MR, Ramteke PW (2014) Fresh water green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresour Technol 156:42–47

    Article  PubMed  CAS  Google Scholar 

  • Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186–193

    PubMed  PubMed Central  CAS  Google Scholar 

  • Marie D, Shi XL, Rigaut-Jalabert F, Vaulot D (2010) Use of flow cytometric sorting to better assess the diversity of small photosynthetic eukaryotes in the English Channel. FEMS Microbiol Ecol 72:165–178

    Article  PubMed  CAS  Google Scholar 

  • Mendoza H, de la Jara A, Carmona L, Duarte VS, Varela JCS (2008) Characterization of Dunaliella salina strains by flow cytometry: a new approach to select carotenoid hyperproducing strains. Electron J Biotechnol 11. https://doi.org/10.2225/vol11-issue4-fulltext-2

  • Mittermeier RA, Robles-Gil P, Hoffmann M, Pilgrim JD, Brooks TM, Mittermeier CG, Lamoreux JL, Fonseca G (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Conservation International, Mexico City, p 392

    Google Scholar 

  • MMA/IBAMA (2003) Plano de Manejo do Parque Nacional dos Lençóis Maranhenses. Ministério do Meio Ambiente, Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis, São Luís, MA 499p

  • Moschini-Carlos V, Pereira D, Wisniewski MJS, Pompeo MLM (2008) The planktonic community in tropical interdunal ponds (Lençóis Maranhenses National Park, Maranhão State, Brazil). Acta Limnol Bras 20:99–110

    Google Scholar 

  • Page R (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Piligaev AV, Sorokina KN, Bryanskaya AV, Peltek SE, Kolchanov NA, Parmon VN (2015) Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production. Algal Res 12:368–376

    Article  Google Scholar 

  • Pollingher U (1986) Phytoplankton periodicity in a subtropical lake (Lake Kinneret, Israel). Hydrobiologia 138:127–138

    Article  Google Scholar 

  • Pröschold T, Marin B, Schlösser UW, Melkonian M (2001) Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152:265–300

    Article  PubMed  Google Scholar 

  • Reynolds CS, Jaworski GHM (1978) Enumeration of natural Microcystis populations. Br Phycol J 13:269–277

    Article  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge 747p

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Santos JHS, Santos NFB (2015) The Lençóis Maranhenses: a paradise of dunes and ponds. In: Vieira BC, Salgado AAR, Santos LJC (eds) Landscapes and landforms of Brazil. World Geomorphological Landscapes, Springer, Berlin pp 79–90

  • Sensen CW, Heimann K, Melkonian M (1993) The production of clonal and axenic cultures of microalgae using fluorescence-activated cell sorting. Eur J Phycol 28:93–97

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Sieracki M, Poulton N, Crosbie N (2005) Automated isolation techniques for microalgae. In: Andersen RA (ed) Algal culturing techniques. Academic Press, NY pp 101–116

  • Silva TL, Reis A, Medeiros R, Oliveira AC, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159:568–578

    Article  PubMed  CAS  Google Scholar 

  • Silva-Lima AW, Walter JM, Garcia GD, Ramires N, Ank G, Meirelles PM, Nobrega AF, Siva-Neto ID, Moura RL, Salomon PS, Thompson CC, Thompson FL (2015) Multiple Symbiodinium strains are hosted by the Brazilian endemic corals Mussismilia spp. Microb Ecol 70:301–310

    Article  PubMed  Google Scholar 

  • Smayda TJ, Reynolds CS (2001) Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J Plankton Res 23:447–461

    Article  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Sun Z, Li G, Wang C, Jing Y, Zhu Y, Zhang S, Liu Y (2014) Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir. Sci Rep 4:6966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Surek B, Melkonian M (2004) CCAC—Culture Collection of Algae at the University of Cologne: a new collection of axenic algae with emphasis on flagellates. Nova Hedwigia 79:77–91

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terashima M, Freeman ES, Jinkerson RE, Jonikas MC (2015) A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants. Plant J 81:147–159

    Article  PubMed  CAS  Google Scholar 

  • Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genomics 14:913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tundisi JG, Bicudo CEM, Matsumura-Tudnisi T (1995) Limnology in Brazil. Academia Brasileira de Ciências, Brazilian Limnological Society, Rio de Janeiro, p 384

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Velloso AL, Sampaio EVSB, Pareyn FGC (2002) Ecorregiões: Propostas para o Bioma Caatinga. 1ª. Ed. Associação Plantas do Nordeste/Instituto de Conservação Ambiental The Nature Conservancy do Brasil, Recife, 76p

  • Vives-Rego J, Lebaron P, Nebe-von Caron G (2000) Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 24:429–448

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd ed. Prentice Hall

Download references

Funding

This work was supported by CNPq (ICMBIO-CNPq grant no. 551994/2011-8 and CNPq grant no. 407297/2013-8), CAPES, and FAPERJ. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contribution to the article as follow. Conception and sampling design: PSS, GOF, FLT, and CER; analysis and interpretation of the data: GOF, PSS, CCT, and CBL; drafting of the article: GOF; critical revision: FLT and PSS; final approval of the article: GOF, FLT, and PSS; support for field sampling: GG and CR; flow cytometric cell sorting: PSS; microscopic cell counts and data assembly: PDFG and GOF; statistical analysis: CBL; DNA sequencing: PIH and JMW; phylogenetic analysis: TVV and CCT; culture collection maintenance: GOF and JMW; and obtaining of funding: FLT, CER and PSS.

Corresponding authors

Correspondence to Fabiano L. Thompson or Paulo S. Salomon.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fistarol, G.O., Hargreaves, P.I., Walter, J.M. et al. Rapid isolation of culturable microalgae from a tropical shallow lake system. J Appl Phycol 30, 1807–1819 (2018). https://doi.org/10.1007/s10811-018-1404-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1404-7

Keywords

Navigation