Skip to main content
Log in

Flow cytometry sorting of freshwater phytoplankton

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

We used the flow sorting capacities of a benchtop FACSCalibur flow cytometer to analyze the phytoplankton community of four different aquatic ecosystems. We show that despite the high optical, mechanistic, and hydrodynamic stress for the cells while sorted, most of the targeted populations could be isolated and grew in mixed culture media subsequent to sorting. Forty-five phytoplankton taxa were isolated, including green algae (29 species), cyanobacteria (eight), diatoms (seven), and cryptomonads (one). The isolation success average was high since 80% of the total sorted populations grew successfully and 47% constituted monocultures. It is noteworthy, however, that some groups could not be isolated, as for example colonial cyanobacteria, chrysophytes, euglenophytes, desmids, or dinoflagellates, and some species such as Cryptomonas sp. were very sensitive to the sorting process. It is proposed that flow cytometric analysis of freshwater phytoplankton might be a relevant tool for water managers and could be applied in some specific cases, such as early monitoring of blooming taxa or basic bio-monitorings of key species. The higher isolation average obtained from the flow sorting can also be powerful for the physiological or molecular study of some taxa after their cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anneville O, Leboulanger C (2001) Long-terms changes in the vertical distribution of phytoplankton biomass and primary production in Lake Geneva: a response to the oligotrophication. Atti Assoc Ital Oceanol Limnol 14:25–35

    Google Scholar 

  • Anneville O, Ginot V, Druart JC, Angeli N (2002) Long-term study (1974–1998) of seasonal changes in the phytoplankton in Lake Geneva: a multi-table approach. J Plankton Res 24:993–1008

    Article  CAS  Google Scholar 

  • Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75:2353–2362

    Article  PubMed  CAS  Google Scholar 

  • Briand J-F, Jacquet S, Flinois C, Avois-Jacquet C, Maisonnette C, Leberre B, Humbert J-F (2005) Variations in the microcystins production of Planktothrix rubescens (cyanobacteria) assessed by a four years in situ survey of Lac du Bourget (France) and by laboratory experiments. Microb Ecol 50:418–428

    Article  PubMed  Google Scholar 

  • Callieri C (2008) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwr Rev 1:1–28

    Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB (1988) A novel free living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Collier JL (2000) Flow cytometry and the single cell in phycology. J Phycol 36:628–644

    Article  Google Scholar 

  • Collier JL, Campbell L (1999) Flow cytometry in molecular aquatic ecology. Hydrobiologia 401:34–54

    Article  Google Scholar 

  • Courties C, Vaquer A, Trousselier M, Chrétiennot-Dinet M-J, Neveux J, Machado C, Claustre H (1994) Smallest eukaryotic organism. Nature 370:255

    Article  Google Scholar 

  • Crosbie ND (2002) Flow cytometric mapping and isolation of freshwater autotrophic picoplankton. Conference at the ASCMAP (Analysis of single cells in the marine phytoplankton) workshop, Alfred Wegener Institute for polar and marine research, April 2002

  • Crosbie ND, Pockl M, Weisse T (2003a) Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J Microbiol Methods 55:361–370

    Article  PubMed  CAS  Google Scholar 

  • Crosbie ND, Teubner K, Weisse T (2003b) Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquat Microb Ecol 33:53–66

    Article  Google Scholar 

  • Crosbie ND, Pöckl M, Weisse T (2003c) Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl Environ Microbiol 69:5716–5721

    Article  PubMed  CAS  Google Scholar 

  • Dandonneau Y, Montel Y, Blanchot J, Giraudeau J, Neveux J (2006) Temporal variability in phytoplankton pigments, picoplankton and coccolithophores along a transect through the North Atlantic and tropical southwestern Pacific. Deep-Sea Res 53:689–712

    Article  CAS  Google Scholar 

  • Drakare S, Blomqvist P, Bergström A-K, Jansson M (2003) Relationships between picophytoplankton and environmental variables in lakes along a gradient of water colour and nutrient content. Freshw Biol 48:729–740

    Article  Google Scholar 

  • Dubelaar GBJ, Jonker RR (2000) Flow cytometry as a tool for the study of phytoplankton. Sci Mar 64:135–156

    Google Scholar 

  • Ducobu H, Huisman J, Jonker RR, Mur LR (1999) Competition between a prochlorophyte and a cyanobacterium under various phosphorus regimes: comparison with the Droop Model. J Phycol 34(3):467–476

    Article  Google Scholar 

  • Goddard VJ, Baker AC, Davy JE, Adams DG, De Ville MM, Thackeray SJ, Maberly SC, Wilson WH (2005) Temporal distribution of viruses, bacteria and phytoplankton throughout the water column in a freshwater hypereutrophic lake. Aquat Microb Ecol 39:211–223

    Article  Google Scholar 

  • Grobbelaar JU (2004) Algal nutrition: mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture, biotechnology and applied phycology. Blackwell, Oxford, pp 97–115

    Google Scholar 

  • Hofstraat JW, van Zeijl WJM, de Vreeze MEJ, Peeters JCH, Peperzak L, Colijn F, Rademaker TWM (1994) Phytoplankton monitoring by flow cytometry: application of flow sorting to identify phytoplankton cells in natural communities. J Plankton Res 16:1197–1224

    Article  Google Scholar 

  • Hoshaw RW, Rosowski JR (1973) Methods for microscopic algae. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, London, pp 53–68

    Google Scholar 

  • Huisman J, Jonker RR, Zonneveld C, Weissing FJ (1999) Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80:211–222

    Google Scholar 

  • Ivanikova NV (2006) Lake Superior phototrophic picoplankton: nitrate assimilation measured with a cyanobacterial nitrate responsive bioreporter and genetic diversity of the natural community. PhD dissertation, Bowling Green State University, p. 24

  • Ivanikova NV, Popels LC, McKay RML, Bullerjahn GS (2007) Lake superior supports novel clusters of cyanobacterial picoplankton. Appl Environ Microbiol 73:4055–4065

    Article  PubMed  CAS  Google Scholar 

  • Jacquet S, Briand JF, Leboulanger C, Avois-Jacquet C, Oberhaus L, Tassin B, Vinçon-Leite B, Paolini G, Druart JC, Anneville O, Humbert J-F (2005) The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4:651–672

    Article  Google Scholar 

  • Jacquet S, Lennon J-F, Marie D, Vaulot D (1998) Picoplankton population dynamics in coastal waters of the N. W. Mediterranean Sea. Limnol Oceanogr 43:1916–1931

    CAS  Google Scholar 

  • Jacquet S, Partensky F, Marie D, Casotti R, Vaulot D (2001) Cell cycle regulation by light in Prochlorococcus strains. Appl Environ Microbiol 67:782–790

    Article  PubMed  CAS  Google Scholar 

  • Jaworski GMH, Talling JF, Heaney SI (1981) The influence of carbon dioxide depletion on growth and sinking rate of two planktonic diatoms in culture. Br Phycol J 16:395–410

    Article  Google Scholar 

  • Jochem FJ (2000) Probing the physiological state of phytoplankton at the single cell level. Sci Mar 64(2):183–195

    Article  Google Scholar 

  • Koch R (1881) Zur Untersuchung von pathogenen Organismen. Mitteilungen des Kaiserlichen Gesundheitsamtes 1:1–48

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota. 2nd part. Oscillatoriales. Elsevier, Munich

    Google Scholar 

  • Landry MR, Hasset RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67:283–288

    Article  Google Scholar 

  • Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175

    CAS  Google Scholar 

  • Li WKW, Dickie PM (2001) Monitoring phytoplankton, bacterioplankton and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry 44:236–246

    Article  PubMed  CAS  Google Scholar 

  • Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid dye SYBR-Green I. Appl Environ Microbiol 63:186–193

    PubMed  CAS  Google Scholar 

  • Marie D, Simon N, Guillou L, Partensky F, Vaulot D (2000) Flow cytometry analysis of marine picoplankton. In: Diamond RA, DeMaggio S (eds) In living color: protocols in flow cytometry and cell sorting. Springer, Berlin, pp 421–454

    Google Scholar 

  • Masson S, Angeli N, Guillard J, Pinel-Alloul B (2001) Diel vertical and horizontal distribution of crustacean zooplankton and young of the year fish in a sub-alpine lake: an approach based on high frequency sampling. J Plankton Res 23:1041–1060

    Article  Google Scholar 

  • Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ (2008) Computer simulations of the energy dissipation rate in a fluorescence-activated cell sorter: Implications to cells. Biotechnol Bioeng 100:260–272

    Article  PubMed  CAS  Google Scholar 

  • Nicoud G, Manalt F (2001) The lacustrine depression at Annecy (France), geological setting and quaternary evolution. J Paleolimnol 25:137–147

    Article  Google Scholar 

  • Nozaki H (2003) Flagellated green algae. In: Wehr JD, Sheath RG (eds) Freshwater algae of North America: ecology and classification. Academic, Paris, pp 225–252

    Chapter  Google Scholar 

  • Oberhaus L, Briand JF, Leboulanger C, Jacquet S, Humbert JF (2007) Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens. J Phycol 43:1191–1199

    Article  CAS  Google Scholar 

  • OECD (1982) Eutrophication of waters. Monitoring, assessment and control. Organization for Economic Co-Operation and Development, Paris (In French)

    Google Scholar 

  • Olson RJ, Vaulot D, Chisholm SW (1985) Marine phytoplankton distributions measured using shipboard flow cytometry. Deep-Sea Res A 32:1273–1280

    Article  Google Scholar 

  • Olson RJ, Zettler ER, Chisholm SW, Dusenberry JA (1991) Advances in oceanography through flow cytometry. In: Demers S (ed) Particle analysis in oceanography. Springer, Berlin, pp 351–399

    Google Scholar 

  • Ouellette AJA, Wilhelm SW (2003) Toxic cyanobacteria: the evolving molecular toolbox. Front Ecol Environ 1:359–366

    Google Scholar 

  • Partensky F, Blanchot J, Lantoine F, Neveux J, Marie D (1996) Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep-Sea Res I 43:1191–1213

    Article  CAS  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    PubMed  CAS  Google Scholar 

  • Passoni S, Callieri C (2000) Picocyanobacteria single forms, aggregates and microcolonies: survival strategy or species succession? Verh—Int Ver Theor Angew Limnol 27:1879–1883

    Google Scholar 

  • Pel R, Floris V, Gons HJ, Hoogveld HL (2004a) Linking flow cytometric cell sorting and compound-specific C-13-analysis to determine population-specific isotopic signatures and growth rates in cyanobacteria-dominated lake plankton. J Phycol 40:857–866

    Article  CAS  Google Scholar 

  • Pel R, Floris V, Hoogveld HL (2004b) Analysis of planktonic community structure and trophic interactions using refined isotopic signatures determined by combining fluorescence-activated cell sorting and isotope-ratio mass spectrometry. Freshw Biol 49:546–562

    Article  Google Scholar 

  • Peperzak L, Vrieling EG, Sandee B, Rutten T (2000) Immuno flow cytometry in marine phytoplankton research. Sci Mar 64:165–181

    Article  Google Scholar 

  • Personnic S, Domaizon I, Dorigo V, Berdjeb L, Jacquet S (2009) Seasonal and spatial variability of virio-, bacterio-, and picophytoplanktonic abundances in three peri-alpine lakes. Hydrobiologia. doi:10.1007/s10750-009-9718-8

  • Rapala J, Sivonen K, Luukkainen R, Niemela S (1993) Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena strains laboratory study. J Appl Phycol 5:581–591

    Article  CAS  Google Scholar 

  • Raven JA (1998) The twelfth Tansley lecture. Small is beautiful: the picophytoplankton. Funct Ecol 12:503–513

    Article  Google Scholar 

  • Reckermann M (2000) Flow sorting in aquatic ecology. Sci Mar 64:235–246

    Google Scholar 

  • Rolland A, Bertrand F, Maumy M, Jacquet S (2009) Assessing phytoplankton structure and spatio-temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis. Water Res. doi:10.1016/j.waters.2009.03.049

  • Rutten TPA, Sandee B, Hofman ART (2005) Phytoplankton monitoring by high performance flow cytometry: a successful approach? Cytometry A 64:16–26

    PubMed  Google Scholar 

  • Sarmento H, Isumbisho M, Descy JP (2006) Phytoplankton ecology of Lake Kivu (eastern Africa). J Plankton Res 28:815–829

    Article  CAS  Google Scholar 

  • Sarmento H, Unrein F, Isumbisho M, Stenuite S, Gasol JM, Descy JP (2008) Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshw Biol 53:756–771

    Article  Google Scholar 

  • Schallenberg M, Burns C (2001) Test of autotrophic picoplankton as early indicators of nutrient in an ultra-oligotrophic lake. Freshw Biol 46:27–37

    Article  Google Scholar 

  • Schmidt-Nielson K (1984) Scaling: why is animal size so important? Cambridge University Press, New York, p 256

    Google Scholar 

  • Sensen CW, Heimann K, Melkonian M (1993) The production of clonal and axenic cultures of microalgae using fluorescence activated cell sorting (FACS). Eur J Phycol 28:93–97

    Article  Google Scholar 

  • Stein JR (1973) Handbook of phycological methods and growth measurements. Cambridge University Press, New York

    Google Scholar 

  • Stockner JG (1991) Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int Rev Gesamten Hydrobiol 76:483–492

    Article  Google Scholar 

  • Stockner JG, Shortreed KS (1991) Autotrophic picoplankton: community composition, Abundance and distribution across a gradient of oligotrophic British Columbia and Yuon Territory lakes. Int Rev Gesamten Hydrobiol 76:581–601

    Article  Google Scholar 

  • Throndsen J (1995) Estimating cell numbers. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine algae. UNESCO, Paris, pp 63–80

    Google Scholar 

  • Thyssen M, Tarran GA, Zubkov MZ, Holland RJ, Gregori G, Burkill PH, Denis M (2008) The emergence of automated high-frequency flow cytometry: revealing temporal and spatial phytoplankton variability. J Plankton Res 30:333–343

    Article  Google Scholar 

  • Tijdens M, van de Waal DV, Slovackova H, Hoogveld HL, Gons HJ (2008) Estimates of bacterial and phytoplankton mortality caused by viral lysis and microzooplalnkton grazing in a eutrophic lake. Freshw Biol 53:1126–1141

    Article  Google Scholar 

  • Tilman D, Sterner RW (1984) Invasions of equilibria: tests of resource competition using two species of algae. Oecologia 61:197–200

    Article  Google Scholar 

  • Toepel J, Langner U, Wilhelm C (2005) Combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the Chl a specific absorption coefficients at the taxon level. J Phycol 41:1099–1109

    Article  CAS  Google Scholar 

  • Toepel J, Wilhelm C, Meister A, Becker A, Martinez-Ballesta Mdel C (2004) Cytometry of freshwater phytoplankton. Meth Cell Biol 75:375–407

    Article  Google Scholar 

  • Vaulot D (1989) CytoPC: processing software for flow cytometric data. Signal Noise 2:8

    Google Scholar 

  • Vaulot D, Marie D (1999) Diel variability of photosynthetic picoplankton in the equatorial Pacific. J Geophys Res 104:3297–3310

    Article  CAS  Google Scholar 

  • Vaulot D, Courties C, Partensky F (1989) A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry 10:629–635

    Article  PubMed  CAS  Google Scholar 

  • Veldhuis MJW, Kraay GW (2000) Application of flow cytometry in marine phytoplankton research: current applications and future perspectives. Sci Mar 64:121–134

    Article  Google Scholar 

  • Vives-Rego J, Lebaron P, Nebe-von Caron G (2000) Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 24:429–448

    Article  PubMed  CAS  Google Scholar 

  • Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (ed) Advances in microbial ecology. Plenum, New York, pp 327–370

    Google Scholar 

  • Weisse T, Mindl B (2002) Picocyanobacteria—sensitive bioindicators of contaminant stress in an alpine lake (Traunsee, Austria). Water Air Soil Pollut 2:191–210

    Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river management. Academic, London

    Google Scholar 

  • Yentsch CM, Horan PK (1989) Cytometry in the aquatic sciences. Cytometry 10:497–499

    Article  PubMed  CAS  Google Scholar 

  • Yentsch CM, Horan PK, Muirhead K, Dortch Q, Haugen EM, Legendre L, Murphy LS, Phinney D, Pomponi SA, Spinrad RW, Wood AM, Yentsch CS, Zahurenec BJ (1983) Flow cytometry and sorting: a powerful technique with potential applications in aquatic sciences. Limnol Oceanogr 28:1275–1280

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Pascal Perney, Jean-Christophe Hustache, Pascal Chifflet (INRA Thonon), and Gérard Paolini (CISALB, Aix-les-Bains), who realized the sampling of the three alpine lakes during the period of this study. Gérard Beaudoin and Yannik Guillemin (IIBRBS) are acknowledged for their help in the sampling of the Reservoir Marne. We want to thank Eliane Menthon for the preparation of the culture media and Jean Claude Druart (INRA, Thonon) for his support in the taxonomic phytoplankton identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphan Jacquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cellamare, M., Rolland, A. & Jacquet, S. Flow cytometry sorting of freshwater phytoplankton. J Appl Phycol 22, 87–100 (2010). https://doi.org/10.1007/s10811-009-9439-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-009-9439-4

Keywords

Navigation