Skip to main content

Advertisement

Log in

Life cycle assessment: heterotrophic cultivation of thraustochytrids for biodiesel production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study provides a life cycle assessment of the energy balance and the potential greenhouse gas impacts of heterotrophic microalgal-derived biodiesel estimated from the upstream biomass production to the downstream emissions from biodiesel combustion. Heterotrophic microalgae can be cultivated using a by-product from biodiesel production such as glycerol as a carbon source. The oils within the algal biomass can then be converted to biodiesel using transesterification or hydroprocessing techniques. This approach may provide a solution to the limited availability of biomass feedstock for production of biorefined transportation fuels. The life cycle assessment of a virtual production facility, modeled on experimental yield data, has demonstrated that cultivation of heterotrophic microalgae for the production of biodiesel is comparable, in terms of greenhouse gas emissions and energy usage (90 g CO2e MJ−1), to fossil diesel (85 g CO2e MJ−1). The life cycle assessment identified that improvement in cultivation conditions, in particular the bioreactor energy inputs and microalgae yield, will be critical in developing a sustainable production system. Our research shows the potential of heterotrophic microalgae to provide Australia’s transportation fleet with a secure, environmentally sustainable alternative fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Athanasoulia E, Melidis P, Aivasidis A (2014) Co-digestion of sewage sludge and crude glycerol from biodiesel production. Renew Energy 62:73–78

    Article  CAS  Google Scholar 

  • BAA (2013) Biodiesel production facilities in Australia, current as at 1 December 2013, Biofuels Association of Australia <http://www.biofuelsassociation.com.au/biodiesel-production-facilities-in-australia> Accessed 20 May 2014

  • Barclay W, Weaver C, Metz J, Hansen J (2010) Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C (eds) Single Cell Oils - Microbial and Algal Oils (2nd Edition). AOCS Press, Champaign, pp 75–96

    Google Scholar 

  • Beer T, Grant T., Morgan G, Lapszewicz J, Anyon P, Edwards J, Williams D (2001). Comparison of transport fuels. Final report (EV45A/2/F3C) to the Australian greenhouse office on the stage 2.of life- cycle emissions analysis of alternative fuels for heavy vehicles. Aspendale, Vic (AU)

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300

    Article  CAS  Google Scholar 

  • De Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24:1681–1698

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brown R (2007) Biodiesel co-product markets in Wyoming for Wyoming Department of Agriculture. Lakewood, CO: International Center for Appropriate & Sustainable Technology. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5064918Accessed 20 May 2014

  • Cavalier-Smith T, Allsopp MTEP, Chao EE (1994) Thraustochytrids are chromists, not fungi: 18 s rRNA signatures of Heterokonta. Phil Trans R Soc London B 346:387–397

    Article  CAS  Google Scholar 

  • Collet P, Hélias A, Lardon L, Ras M, Goy RA, Steyer JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

  • Danaei G, Ding EL, Mozaffarian D, Taylor B, Jr R, Murray CJL, Ezzati M (2009) The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med 6(4):e1000058

    Article  PubMed Central  PubMed  Google Scholar 

  • Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A: Gen 281(1):225–231

  • Dobes L (1994) Alternative fuels in Australian transport. Bureau of Transport and Communications, Economics, Canberra

    Google Scholar 

  • Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-) hydrogen production. Trends Plant Sci 11:543–549

    Article  CAS  PubMed  Google Scholar 

  • Fisher L, Nicholls D, Sanderson K (2007) Production of biodiesel. WIPO Patent No. 2008067605

  • Forsyth JS, Carlson SE (2001) Long-chain polyunsaturated fatty acids in infant nutrition: effects on infant development. Curr Opin Clin Nutr Metab Care 4:123–126

    Article  CAS  PubMed  Google Scholar 

  • Grant T, Beer T, Campbell PK, Batten D (2008) Life cycle assessment of environmental outcomes and greenhouse gas emissions from biofuels production in Western Australia. Department of Agriculture and Food Government of Western Australia. CSIRO, Western Australia

    Google Scholar 

  • Holland FA, Chapman FS (1966) Liquid mixing and processing in stirred tanks. Reinhold Pub. Corp, New York

    Google Scholar 

  • Hong WK, Yu A, Heo SY, Oh BR, Kim CH, Sohn JH, Yang JW, Kondo A, Seo JW (2013) Production of lipids containing high levels of docosahexaenoic acid from empty palm fruit bunches by Aurantiochytrium sp. KRS101. Bioproc Biosyst Eng 36:959–963

    Article  CAS  Google Scholar 

  • Hossain AK, Davies PA (2010) Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis. Renew Energy 35:1–13

    Article  CAS  Google Scholar 

  • Huntley M, Redalje D (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Chang 12:573–608

    Article  Google Scholar 

  • Jain R, Raghukumar S, Sambaiah K, Kumon Y, Nakahara T (2007) Docosahexaenoic acid accumulation in thraustochytrids: search for the rationale. Mar Biol 151:1657–1664

    Article  CAS  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348

    Article  CAS  Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183

    Article  CAS  Google Scholar 

  • Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677

    Article  CAS  Google Scholar 

  • Knothe G, Sharp CA, Ryan TW III (2006) Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuel 20:403–408

    Article  CAS  Google Scholar 

  • Lammers PJ, Kerr BJ, Honeyman MS, Stalder K, Dozier WA, Weber TE, Kidd MT, Bregendahl K (2008) Nitrogen-corrected apparent metabolizable energy value of crude glycerol for laying hens. Poult Sci 87:104–107

    Article  CAS  PubMed  Google Scholar 

  • Leander CA, Porter D, Leander BS (2004) Comparative morphology and molecular phylogeny of aplanochytrids (Labyrinthulomycota). Eur J Protistol 40:317–328

    Article  Google Scholar 

  • Lee Chang KJ, Mansour MP, Dunstan GA, Blackburn SI, Koutoulis A, Nichols PD (2011) Odd-chain polyunsaturated fatty acids in thraustochytrids. Phytochemistry 72:1460–1465

    Article  Google Scholar 

  • Lee Chang KJ, Dunstan GA, Abell G, Clementson L, Blackburn S, Nichols PD, Koutoulis A (2012) Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93:2215–2231

    Article  PubMed  Google Scholar 

  • Lee Chang KJ, Dumsday G, Nichols P, Dunstan G, Blackburn S, Koutoulis A (2013) High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils. Appl Microbiol Biotechnol:1-12

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (1999) The biological potential of thraustochytrids. Mar Biotechnol 1:580–587

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Maas PAY, Kleinschuster SJ, Dykstra MJ, Smolowitz R, Parent J (1999) Molecular characterization of QPX (Quahog Parasite Unknown), a pathogen of Mercenaria mercenaria. J Shellfish Res 18:561–567

    Google Scholar 

  • Mendes A, da Silva TL, Reis A (2007) DHA concentration and purification from the marine heterotrophic microalga Crypthecodinium cohnii CCMP 316 by winterization and urea complexation. Food Technol Biotechnol 45:38

    CAS  Google Scholar 

  • Monyem A, Canakci M, Van Gerpen JH (2000) Investigation of biodiesel thermal stability under simulated in-use conditions. Appl Eng Agric 16:373–378

    Article  Google Scholar 

  • Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA 296:1885–1899

    Article  CAS  PubMed  Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 11:223–242

    Article  Google Scholar 

  • Passell H, Dhaliwal H, Reno M, WU B, Ben Amotz A, Ivry E, Gay M, Czartoski T, Laurin L, Ayer N (2013) Algae biodiesel life cycle assessment using current commercial data. J Environ Manag 129:103–111

    Article  CAS  Google Scholar 

  • Penner JE, Lister D, Griggs DJ, Dokken DJ, McFarland M (1999) Aviation and the global atmosphere: a special report of the Intergovernmental Panel on Climate Change. Cambridge University Press

  • Peterka A (2013) Biofuels: Energy companies buckle up in hope of green aviation takeoff. Environmental and Energy Publishing database http://www.eenews.net/stories/1059974887 Accessed 20 May 2014

  • Pluske J (2007) Evaluation of glycerine as co-product of biodiesel production for the pig industry. Pork Co-operative Research Center, 1, 1-47 http://www.apri.com.au/1C-101_Glycerine_report.pdf Accessed 20 Apr 2014

  • Porter D (1990) Phylum Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 388–398

    Google Scholar 

  • Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939

    Article  CAS  PubMed  Google Scholar 

  • Quispe CAG, Coronado CJR, Carvalho JRJA (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sustain Energy Rev 27:475–493

    Article  CAS  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine portists, the Labyrinthulomycetes (thraustochytrids and labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  • Rye L, Blakey S, Wilson CW (2010) Sustainability of supply or the planet: a review of potential drop-in alternative aviation fuels. Energy Environ Sci 3:17–27

    Article  CAS  Google Scholar 

  • Samarasinghe N, Fernando S, Lacey R, Faulkner WB (2012) Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renew Energy 48:300–308

    Article  CAS  Google Scholar 

  • Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998a) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report. National Renewable Energy Lab., Golden, Colorado (USA)

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998b) Look back at the U.S. Department of Energy’s Aquatic Species Program: biodiesel from algae; close-out report. National Renewable Energy Lab., US Department of Energy. Golden, CO. (USA)

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    Article  CAS  PubMed  Google Scholar 

  • Stratton RW, Wong HM, Hileman JI (2011) Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels. Environ Sci Technol 45:4637–4644

    Article  CAS  PubMed  Google Scholar 

  • US DOE (2010) National algal biofuels technology roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program/www1.eere.energy.gov/biomass/pdfs/algal_biofuels_roadmap.pdf. Accessed 18 Mar 2011

  • Wahlen BD, Morgan MR, McCurdy AT, Willis RM, Morgan MD, Dye DJ, Bugbee B, Wood BD, Seefeldt LC (2013) Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions. Energy Fuel 27:220–228

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Lu Y, Chen Y-F, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Energy Flagship and Food Futures Flagship for their support, Dr. David Batten for comments on an earlier version of this manuscript, and the helpful comments from two anonymous journal referees and Prof. Michael A. Borowitzka. Kim Jye Lee Chang was supported by a CSIRO Office of the Chief Executive (OCE) postdoctoral fellowship through the CSIRO Intelligent Processing Transformational Capability Platform (IP-TCP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Jye Lee Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee Chang, K.J., Rye, L., Dunstan, G.A. et al. Life cycle assessment: heterotrophic cultivation of thraustochytrids for biodiesel production. J Appl Phycol 27, 639–647 (2015). https://doi.org/10.1007/s10811-014-0364-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0364-9

Keywords

Navigation