Skip to main content

pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms

Abstract

Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO2 addition. Here, we uncouple the effects of pH and CO2 input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19 ± 0.008 and 0.19 ± 0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6 × 106 ± 9 × 106 cells mL−1 for pH 8 and 92.8 × 106 ± 24 × 106 cells mL−1 for pH 9). Lipid accumulation of unbuffered controls were 21.8 ± 5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9 ± 39.6 × 104 organisms mL−1) than higher pH treatments (0.1–6.8 × 104 organisms mL−1). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7 ± 5.1 × 104 organisms mL−1) than any of the pH treatments (3.6–4.7 × 104 organisms mL−1). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO2 addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abu-Rezq TS, Al-Musallam L, Al-Shimmari J, Dias P (1999) Optimum production conditions for different high-quality marine algae. Hydrobiologia 403:97–107

    Article  Google Scholar 

  • Arudchelvam Y, Nirmalakhandan N (2012) Energetic optimization of algal lipid production in bubble columns: part 1: evaluation of gas sparging. Biomass Bioenergy 46:757–764

    CAS  Article  Google Scholar 

  • Bartley ML, Boeing WJ, Corcoran A, Holguin FO, Schaub T (2013) Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenergy 54:83–88

    CAS  Article  Google Scholar 

  • Becker EW (1994) Microalgae biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer, Berlin, pp 203–218

    Chapter  Google Scholar 

  • Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalgae Nannochloropsis salina. Biomass 12:37–47

    CAS  Article  Google Scholar 

  • BP (2011) BP statistical review of world energy. British Petroleum. http://www.bp.com/sectionbodycopy.do?categoryId=7500&contentId=7068481. Accessed March 9, 2011.

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    CAS  Article  Google Scholar 

  • Brown MR, Garland CD, Jeffrey SW, Jameson ID, Leroi JM (1993) The gross and amino acid compositions of batch and semi-continuous cultures of Isochrysis sp. (clone T. ISO), Pavlova lutheri and Nannochloropsis oculata. J Appl Phycol 5:285–296

    CAS  Article  Google Scholar 

  • Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195:35–49

    CAS  Article  Google Scholar 

  • Chi Z, O’Fallon JV, Chen S (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29:537–541

    CAS  PubMed  Article  Google Scholar 

  • Chini Zittelli G, Pastorelli R, Tredici MR (2000) A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp. under artificial illumination. J Appl Phycol 12:521–526

    Article  Google Scholar 

  • Chini Zittelli G, Rodolfi L, Tredici MR (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J Appl Phycol 15:107–114

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  PubMed  Article  Google Scholar 

  • Das P, Aziz SS, Obbard JP (2011) Two phase microalgae growth in the open system for enhanced lipid productivity. Renew Energ 36:2524–2528

    CAS  Article  Google Scholar 

  • Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534–2544

    CAS  Article  Google Scholar 

  • Franchino M, Comino E, Bona F, Riggio VA (2013) Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 92:738–744

    CAS  PubMed  Article  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    CAS  PubMed  Article  Google Scholar 

  • Griffiths MJ, Harrison SL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    CAS  Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    CAS  PubMed  Article  Google Scholar 

  • Hsu J (1996) Multiple comparisons: theory and methods. Chapman & Hall, London

    Book  Google Scholar 

  • Huang XX, Huang ZZ, Wen W, Yan JQ (2013) Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J Appl Phycol 25:129–137

    Article  Google Scholar 

  • James SC, Janardhanam V, Hanson DT (2013) Simulating pH effects in an algal-growth hydrodynamics model. J Phycol 49:608–615

    CAS  Article  Google Scholar 

  • Karl TR, Melino JM, Peterson TC (2009) Global climate change impacts in the United States. Cambridge University Press, Cambridge

    Google Scholar 

  • Leakey RJG, Burkill PH, Sleigh MA (1994) A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J Plankton Res 16:375–389

    Article  Google Scholar 

  • Maberly SC, Ball LA, Raven JA, Sultemeyer D (2009) Inorganic carbon acquisition by Chrysophytes. J Phycol 45:1052–1061

    CAS  Article  Google Scholar 

  • Mata TM, Martins A, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Article  Google Scholar 

  • Menke S, Sennhenn A, Sachse JH, Majewski E, Huchzermeyer B, Rath T (2012) Screening of microalgae for feasible mass production in industrial hypersaline wastewater using disposable bioreactors. Clean-Soil Air Water 40:1401–1407

    CAS  Article  Google Scholar 

  • Moazami N, Ashori A, Ranjbar R, Tangestani M, Eghtesadi R, Nejad AS (2012) Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass Bioenergy 39:449–453

    CAS  Article  Google Scholar 

  • Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoor in bag photobioreactors. J Appl Phycol 25:387–398

    CAS  Article  Google Scholar 

  • Moheimani NR, Borowitzka MA (2011) Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Appl Microbiol Biot 90:1399–1407

    CAS  Article  Google Scholar 

  • Patil P, Reddy H, Muppaneni T, Mannarswamy A, Holguin O, Schaub T, Nirmalakhandan N, Cooke P, Deng S (2012) Power dissipation in microwave-enhanced in-situ transesterification of algal biomass to biodiesel. Green Chem 14:809

    CAS  Article  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    CAS  PubMed  Article  Google Scholar 

  • Rebolloso-Fuentes MM, Navarro-Perez A, Garćia-Camacho F, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agric Food Chem 49:2966–2972

    CAS  PubMed  Article  Google Scholar 

  • Richmond A, Becker EW (1986) Technological aspects of mass cultivation—a general outline. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC, Boca Raton, pp 245–264

    Google Scholar 

  • Richmond A, Cheng-Wu Z (2001) Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. J Biotechnol 85:259–269

    CAS  PubMed  Article  Google Scholar 

  • Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on the productivity of Spirulina platensis in open raceways. J Appl Phycol 2:195–206

    Article  Google Scholar 

  • Rocha J, Garcia JEC, Henriques MHF (2003) Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol Eng 20:237–242

    CAS  PubMed  Article  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399

    CAS  Article  Google Scholar 

  • SevrinReyssac J, Blier R, Dumas A, Ouelette Y (1996) Intensive microalgae cultures integrated in an experimental lagooning recycling swine manure. Ann Biol 35:41–68

    Google Scholar 

  • Sigala J, Unc A (2012) A PCR–DGGE approach to evaluate the impact of wastewater source on the antibiotic resistance diversity in treated wastewater effluent. Water Sci Technol 65:1323–1331

    CAS  PubMed  Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Optimization of Nannochloropsis oculata growth using the response surface method. J Chem Technol Biotechnol 81:1049–1056

    CAS  Article  Google Scholar 

  • Stoecker DK, Gifford DJ, Putt M (1994) Preservation of marine planktonic ciliates—losses and cell shrinkage during fixation. Mar Ecol Prog Ser 110:293–299

    Article  Google Scholar 

  • Sukenik A, Zmora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117:313–326

    CAS  Article  Google Scholar 

  • Tufvesson LM, Lantz M, Borjesson P (2013) Environmental performance of biogas produced from industrial residues including competition with animal feed—life-cycle calculations according to different methodologies and standards. J Cleaner Prod 53:214–223

    CAS  Article  Google Scholar 

  • Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5:731–740

    Article  Google Scholar 

  • Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biot 79:707–718

    CAS  Article  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Weisse T, Stadler P (2006) Effects of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol Oceanogr 51:1708–1715

    CAS  Article  Google Scholar 

  • Yamasaki S, Hirata H (1995) CO2 concentration change in Nannochloropsis sp. culture medium. Aquacult Eng 14:357–365

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the valuable work from the following undergraduate students: Herman Campos, Levi Chavez, Renee Pardee, Herberto Chaparro, and Zach Brecheisen. Darren James provided valuable help with statistical analyses for this research. This work is supported by the U.S. Department of Energy under contract DE-EE0003046 awarded to the National Alliance for Advanced Biofuels and Bioproducts. This is a New Mexico Agricultural Experiment Station publication, supported by state funds and the U.S. Hatch Act.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiebke J. Boeing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bartley, M.L., Boeing, W.J., Dungan, B.N. et al. pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. J Appl Phycol 26, 1431–1437 (2014). https://doi.org/10.1007/s10811-013-0177-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0177-2

Keywords

  • Algae biodiesel
  • Nannochloropsis salina
  • FAME analysis
  • pH
  • Oil accumulation
  • Invaders