Skip to main content
Log in

Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of changes in CO2 and pH on biomass productivity and carbon uptake of Pleurochrysis carterae and Emiliania huxleyi in open raceway ponds and a plate photobioreactor were studied. The pH of P. carterae cultures increased during day and decreased at night, whereas the pH of E. huxleyi cultures showed no significant diurnal changes. P. carterae coccolith production occurs during the dark period, whereas in E. huxleyi, coccolith production is mainly during the day. Addition of CO2 at constant pH (pH-stat) resulted in an increase in P. carterae biomass and coccolith productivity, while CO2 addition lowered E. huxleyi biomass and coccolith production. Neither of these algae could grow at less than pH 7.5. Species-specific diurnal pH and pCO2 variations could be indicative of significant differences in carbon uptake between these two species. While E. huxleyi has been suggested to be predominantly a bicarbonate user, our results indicate that P. carterae may be using CO2 as the main C source for photosynthesis and calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balch WM, Fritz JJ, Fernandez E (1996) Decoupling of calcification and photosynthesis in the coccolithophore Emiliania huxleyi under steady-state light-limited growth. Mar Ecol Prog Ser 142:87–97

    Article  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge, p 293

    Google Scholar 

  • Benemann J (1997) CO2 mitigation with microalgae systems. Energy Convers Manage 38:475–479

    Article  Google Scholar 

  • Berry L, Taylor AR, Lucken U, Ryan KP, Brownlee C (2002) Calcification and inorganic carbon acquisition in coccolithophores. Funct Plant Biol 29:289–299

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1982) Mechanisms in algal calcification. Prog Phycol Res 1:137–177

    CAS  Google Scholar 

  • Borowitzka MA (1989) Carbonate calcification in algae—initiation and control. In: Mann S, Webb J, Williams RJP (eds) Biomineralization: chemical and biochemical perspectives. VCH, Weinheim, pp 63–94

    Google Scholar 

  • Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer, Berlin, pp 203–218

    Chapter  Google Scholar 

  • Borowitzka MA (1999) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 387–409

    Google Scholar 

  • Brewer PG, Goldman JC (1976) Alkalinity changes generated by phytoplankton growth. Limnol Oceanogr 21:108–117

    Article  CAS  Google Scholar 

  • Brownlee C, Taylor A (2004) Calcification in coccolithophores: a cellular perspective. In: Thierstein HR (ed) Coccolithophores: from molecular processes to global impact. Springer, Berlin, pp 31–49

    Chapter  Google Scholar 

  • Buitenhuis ET, de Baar HJW, Veldhuis MJW (1999) Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. J Phycol 35:949–959

    Article  CAS  Google Scholar 

  • Crenshaw MA (1964) Coccolith formation by two marine coccolithophorids, Coccolithus huxleyi and Hymenomonas sp. Ph.D. thesis, Duke University

  • Dong LF, Nimer NA, Okus E, Merrett MJ (1993) Dissolved inorganic carbon utilization in relation to calcite production in Emiliania huxleyi (Lohmann) Kamptner. New Phytol 123:679–684

    Article  CAS  Google Scholar 

  • Dudley WC, Blackwelder P, Brand L, Duplessy J (1986) Stable isotopic composition of coccoliths. Mar Micropaleontol 10:1–8

    Article  Google Scholar 

  • Edvardsen B, Eikrem W, Green JC, Andersen RA, Moon-Van der Staay SY, Medlin LK (2000) Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia 39:19–35

    Article  Google Scholar 

  • Fabry, VJ (2007) Calcium Carbonate produced by coccolithophorid algae in long term, Carbon Dioxide Sequestration. pp 23–25

  • Feng Y, Warner ME, Zhang Y, Jun S, Fei-Xue F, Rose JM, Hutchins DA (2008) Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur J Phycol 43:87–98

    Article  CAS  Google Scholar 

  • Fernandez E, Balch WM, Maranon E, Holligan PM (1994) High rates of lipid biosynthesis in cultured, mesocosm and coastal populations of the coccolithophore Emiliania huxleyi. Mar Ecol Prog Ser 114:13–22

    Article  CAS  Google Scholar 

  • Gattuso JP, Pichon M, Frankignoulle M (1995) Biological control of air-sea CO2 fluxes—effect of photosynthetic and calcifying marine organisms and ecosystems. Mar Ecol Prog Ser 129:307–312

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Guy RD, Berry JA, Fogel ML, Hoering TC (1989) Differential fractionation of oxygen isotopes by cyanide-resistant and cyanide-sensitive respiration in plants. Planta 177:483–491

    Article  CAS  PubMed  Google Scholar 

  • Guy RD, Fogel ML, Berry JA (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol 101:37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins EK, Lee JJ (2001) Architecture of the Golgi apparatus of a scale-forming alga: biogenesis and transport of scales. Protoplasma 216:227–238

    Article  CAS  PubMed  Google Scholar 

  • Herfort L, Thanke B, Roberts J (2002) Acquisition and use of bicarbonate by Emiliania huxleyi. New Phytol 156:427–436

    Article  CAS  PubMed  Google Scholar 

  • Herzog HJ, Drake EM (1996) Carbon dioxide recovery and disposal from large energy systems. Ann Rev Energ Env 21:145–166

    Article  Google Scholar 

  • Israel AA, Gonzalez EL (1996) Photosynthesis and inorganic carbon utilization in Pleurochrysis sp (Haptophyta), a coccolithophorid alga. Mar Ecol Prog Ser 137:243–250

    Article  CAS  Google Scholar 

  • Leonardos N, Geider RJ (2005) Elevated atmospheric carbon dioxide increases organic carbon fixation by Emiliania huxleyi (Haptophyta), under nutrient-limited high-light conditions. J Phycol 41:1196–1203

    Article  CAS  Google Scholar 

  • Lewis ER, Wallace DWR (1998) Program developed for CO2 system calculations. BNL-61827 informal. Oak Ridge National Laboratory, Oak Ridge

  • Linschooten C, Vanbleijswijk JDL, Vanemburg PR, Devrind JPM, Kempers ES, Westbroek P, De Vrind-De Jong EW (1991) Role of the light-dark cycle and medium composition on the production of coccoliths by Emiliania huxleyi (Haptophyceae). J Phycol 27:82–86

    Article  Google Scholar 

  • Miller AG, Salon C, Espie GS, Canvin DT (1997) Measurement of the amount of isotopic composition of the CO2 released from the cyanobacterium Synechococcus UTEX 625 after rapid quenching of the active CO2 transport system. Can J Bot 75:981–987

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006a) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 10:703–712

    Article  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006b) Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotech Bioeng 96:27–36

    Article  CAS  Google Scholar 

  • Nielsen MV (1995) Photosynthetic characteristics of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) exposed to elevated concentrations of dissolved inorganic carbon. J Phycol 31:715–719

    Article  Google Scholar 

  • Nimer NA, Merrett MJ (1992) Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann. New Phytol 121:173–177

    Article  CAS  Google Scholar 

  • Nimer N, Merrett MJ (1993) Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon. New Phytol 123:673–677

    Article  CAS  Google Scholar 

  • Nimer NA, Guan Q, Merrett MJ (1994) Extra- and intra-cellular carbonic anhydrase in relation to culture age in a high-calcifying strain of Emiliania huxleyi Lohmann. New Phytol 126:601–607

    Article  CAS  Google Scholar 

  • Nimer NA, Merrett MJ, Brownlee C (1996) Inorganic carbon transport in relation to culture age and inorganic carbon concentration in a high-calcifying strain of Emiliania huxleyi (Prymnesiophyceae). J Phycol 32:813–818

    Article  CAS  Google Scholar 

  • Nimer NA, Iglesias Rodriguez MD, Merrett MJ (1997) Bicarbonate utilization by marine phytoplankton species. J Phycol 33:625–631

    Article  CAS  Google Scholar 

  • Paasche E (1964) A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Physiol Plant Suppl 3:5–82

    Google Scholar 

  • Paasche E (2002) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation and calcification-photosynthesis interactions. Phycologia 40:503–509

    Article  Google Scholar 

  • Quiroga O, Gonzalez EL (1993) Carbonic anhydrase in the chloroplast of a coccolithophorid (Prymnesiophyceae). J Phycol 29:321–324

    Article  CAS  Google Scholar 

  • Riebesell U, Revill AT, Holdsworth G, Volkman JK (2000) The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochim Cosmochim Acta 64:4179–4192

    Article  CAS  Google Scholar 

  • Sciandra A, Harlay J, Lefèfre D, Lemée R, Rimmelin P, Denis M, Gattuso J-P (2003) Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation. Mar Ecol Prog Ser 261:111–127

    Article  Google Scholar 

  • Seki M, et al (1995) Effect of CO2 concentration on growth and carbon fixation rate of Pleurochrysis carterae. J Chem Eng Jap 28:474–476

    Article  CAS  Google Scholar 

  • Sekino K, Shiraiwa Y (1994) Accumulation and utilization of dissolved inorganic carbon by a marine unicellular coccolithophorid, Emiliania huxleyi. Plant Cell Physiol 35:353–361

    CAS  Google Scholar 

  • Sikes CS, Wheeler AP (1982) Carbonic anhydrase and carbon fixation in coccolithophorids. J Phycol 18:423–426

    Article  CAS  Google Scholar 

  • Sikes CS, Roer RD, Wilbur KM (1980) Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition. Limnol Oceanogr 25:248–261

    Article  CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 2nd edn. Fisheries Research Board of Canada Bulletin 167. Fisheries Research Board of Canada, Ottawa, pp 24–38

  • Wu Q, Dai J, Shiraiwa Y, Sheng G, Fu J (1999) A renewable energy source—hydrocarbon gases resulting from pyrolysis of the marine nanoplanktonic alga Emiliania huxleyi. J Appl Phycol 11:137–142

    Article  Google Scholar 

  • Zondervan I, Rost B, Riebesell U (2002) Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J Exp Mar Biol Ecol 272:55–70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid R. Moheimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moheimani, N.R., Borowitzka, M.A. Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Appl Microbiol Biotechnol 90, 1399–1407 (2011). https://doi.org/10.1007/s00253-011-3174-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3174-x

Keywords

Navigation