Skip to main content
Log in

Carbon-graphene hybrid supporting platinum–tin electrocatalyst to enhance ethanol oxidation reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Direct ethanol fuel cell (DEFC) is promising source for mobile and portable applications, but the electrocatalysts are based on metal noble alloys or doping elements to minimize the incomplete ethanol oxidation and poisoning effect. While the main problem persists, this study describes the enhancement of ethanol oxidation reaction by adding graphene (G) to Vulcan XC-72R carbon black (C) metal support, with different C/G ratios. The Graphene was prepared from exfoliated graphite following by dried at ambient temperature. The 60 wt% graphene hybrid support enhances the current density at 5% cyclic voltammetry (CV) and 127% chronoamperometry (CA) higher than carbon pure support in acid electrolyte, whereas in alkaline, graphene (60 wt%) showed the highest electrochemical activity with an increase of current 82% (CV) and 130% (CA). Therefore, we demonstrated the enhancement of the catalyst electrochemical activity in both electrolytes through a simple synthesis method. The 40 wt% carbon and 60 wt% graphene hybrid support achieving higher performance in ethanol oxidation, evidencing a potential application in DEFC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Altarawneh RM (2021) Overview on the vital step toward addressing platinum catalyst poisoning mechanisms in acid media of direct ethanol fuel cells (DEFCs). Energy Fuels 35(15):11594–11612. https://doi.org/10.1021/acs.energyfuels.1c00453

    Article  CAS  Google Scholar 

  2. Razmi AR, Alirahmi SM, Nabat MH, Assareh E, Shahbakhti M (2022) A green hydrogen energy storage concept based on parabolic trough collector and proton exchange membrane electrolyzer/fuel cell: thermodynamic and exergoeconomic analyses with multi-objective optimization. Int J Hydrogen Energy 47(62):26468–26489. https://doi.org/10.1016/j.ijhydene.2022.03.021

    Article  CAS  Google Scholar 

  3. Akhairi MAF, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrogen Energy 41(7):4214–4228. https://doi.org/10.1016/j.ijhydene.2015.12.145

    Article  CAS  Google Scholar 

  4. Pehnt M (2001) Life-cycle assessment of fuel cell stacks. Int J Hydrogen Energy 26(1):91–101. https://doi.org/10.1016/S0360-3199(00)00053-7

    Article  CAS  Google Scholar 

  5. Li C, Zhao D-H, Long H-L, Li M (2021) Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met 40(10):2657–2689. https://doi.org/10.1007/s12598-020-01694-w

    Article  CAS  Google Scholar 

  6. Long Y et al (2021) N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries. Carbon 179:365–376. https://doi.org/10.1016/j.carbon.2021.04.039

    Article  CAS  Google Scholar 

  7. Das SK, Kesh A, Akula S, Panda SK, Kiruthika GVM, Sahu AK (2022) Co-, Ni-catalyzed borylation of carbon nanofibers for oxygen reduction reaction in an anion exchange membrane fuel cell. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.2c01957

    Article  Google Scholar 

  8. Mondal S, Choutipalli VSK, Jena BK, Subramanian V, Raj CR (2020) Bifunctional electrocatalytic activity of ordered intermetallics based on Pd and Sn. J Phys Chem C 124(18):9631–9643. https://doi.org/10.1021/acs.jpcc.9b10417

    Article  CAS  Google Scholar 

  9. Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114(1):32–53. https://doi.org/10.1016/S0378-7753(02)00542-6

    Article  CAS  Google Scholar 

  10. Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sustain Energy Rev 16(1):981–989. https://doi.org/10.1016/j.rser.2011.09.020

    Article  CAS  Google Scholar 

  11. Zhang Y, Gao F, You H, Li Z, Zou B, Du Y (2022) Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coord Chem Rev 450:214244. https://doi.org/10.1016/j.ccr.2021.214244

    Article  CAS  Google Scholar 

  12. Wang X-F et al (2023) WO3 boosted water tolerance of Pt nanoparticle on SO42–ZrO2 for propane oxidation. Appl Catal B 338:123000. https://doi.org/10.1016/j.apcatb.2023.123000

    Article  CAS  Google Scholar 

  13. Park HW, Seo BG, Shim JW, Il Kim N, Choi YS, Shim JH (2023) Atomic layer deposited platinum on tungsten oxide support as high performance hybrid catalysts for polymer electrolyte membrane fuel cells. Appl Catal B. https://doi.org/10.1016/j.apcatb.2023.122956

    Article  Google Scholar 

  14. Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L (1998) Influence of the structure in low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochim Acta 43(24):3665–3673. https://doi.org/10.1016/S0013-4686(98)00124-8

    Article  CAS  Google Scholar 

  15. Cui C-H, Yu S-H (2013) Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications. Acc Chem Res 46(7):1427–1437. https://doi.org/10.1021/ar300254b

    Article  CAS  PubMed  Google Scholar 

  16. Marčeta Kaninski MP et al (2021) Comparison of Pt and Pd anode catalysts supported on nanocrystalline Ru–SnO2 for ethanol oxidation in fuel cell applications. Int J Hydrogen Energy 46(77):38270–38280. https://doi.org/10.1016/j.ijhydene.2021.09.088

    Article  CAS  Google Scholar 

  17. Miao B-Q et al (2023) Efficient promotion of ethanol complete electrooxidation by anti-poisoning rhodium-bismuth alloy nanodendrites. Appl Catal B 337:122967. https://doi.org/10.1016/j.apcatb.2023.122967

    Article  CAS  Google Scholar 

  18. Leal da Silva E et al (2022) Influence of the support and SnO2 content on the electrocatalytic properties of PdSn/C electrocatalysts for EOR in alkaline medium. Waste Biomass Valorization 13(3):1705–1716. https://doi.org/10.1007/s12649-021-01604-w

    Article  CAS  Google Scholar 

  19. Hrnjic A et al (2021) Observing, tracking and analyzing electrochemically induced atomic-scale structural changes of an individual Pt–Co nanoparticle as a fuel cell electrocatalyst by combining modified floating electrode and identical location electron microscopy. Electrochim Acta 388:138513. https://doi.org/10.1016/j.electacta.2021.138513

    Article  CAS  Google Scholar 

  20. Vinayan BP, Jafri RI, Nagar R, Rajalakshmi N, Sethupathi K, Ramaprabhu S (2012) Catalytic activity of platinum–cobalt alloy nanoparticles decorated functionalized multiwalled carbon nanotubes for oxygen reduction reaction in PEMFC. Int J Hydrogen Energy 37(1):412–421. https://doi.org/10.1016/j.ijhydene.2011.09.069

    Article  CAS  Google Scholar 

  21. Daş E, Kaplan BY, Gürsel SA, Yurtcan AB (2019) Graphene nanoplatelets-carbon black hybrids as an efficient catalyst support for Pt nanoparticles for polymer electrolyte membrane fuel cells. Renew Energy 139:1099–1110. https://doi.org/10.1016/j.renene.2019.02.137

    Article  CAS  Google Scholar 

  22. Arici E, Kaplan BY, Mert AM, Alkan Gursel S, Kinayyigit S (2019) An effective electrocatalyst based on platinum nanoparticles supported with graphene nanoplatelets and carbon black hybrid for PEM fuel cells. Int J Hydrogen Energy 44(27):14175–14183. https://doi.org/10.1016/j.ijhydene.2018.11.210

    Article  CAS  Google Scholar 

  23. Antolini E (2012) Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl Catal B 123–124:52–68. https://doi.org/10.1016/j.apcatb.2012.04.022

    Article  CAS  Google Scholar 

  24. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88(1–2):1–24. https://doi.org/10.1016/j.apcatb.2008.09.030

    Article  CAS  Google Scholar 

  25. Kim J-P et al (2009) Long-term stability of various carbon-nanotube-based micro-tip emitters. Diam Relat Mater 18(2–3):486–489. https://doi.org/10.1016/j.diamond.2008.10.019

    Article  CAS  Google Scholar 

  26. Wu G et al (2013) A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. Chem Commun 49(32):3291. https://doi.org/10.1039/c3cc39121c

    Article  CAS  Google Scholar 

  27. Zhang Y et al (2011) One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity. Electrochim Acta 56(24):8746–8751. https://doi.org/10.1016/j.electacta.2011.07.094

    Article  CAS  Google Scholar 

  28. Wang R-X, Fan Y-J, Wang L, Wu L-N, Sun S-N, Sun S-G (2015) Pt nanocatalysts on a polyindole-functionalized carbon nanotube composite with high performance for methanol electrooxidation. J Power Sources 287:341–348. https://doi.org/10.1016/j.jpowsour.2015.03.181

    Article  CAS  Google Scholar 

  29. Işıkel Şanlı L, Bayram V, Ghobadi S, Düzen N, Alkan Gürsel S (2017) Engineered catalyst layer design with graphene-carbon black hybrid supports for enhanced platinum utilization in PEM fuel cell. Int J Hydrogen Energy 42(2):1085–1092. https://doi.org/10.1016/j.ijhydene.2016.08.210

    Article  CAS  Google Scholar 

  30. Şanlı LI, Yarar B, Bayram V, Gürsel SA (2017) Electrosprayed catalyst layers based on graphene–carbon black hybrids for the next-generation fuel cell electrodes. J Mater Sci 52(4):2091–2102. https://doi.org/10.1007/s10853-016-0497-0

    Article  CAS  Google Scholar 

  31. Sevim Yılmaz M, Kaplan BY, Metin Ö, Gürsel SA (2018) A facile synthesis and assembly of ultrasmall Pt nanoparticles on reduced graphene oxide-carbon black hybrid for enhanced performance in PEMFC. Mater Des 151:29–36. https://doi.org/10.1016/j.matdes.2018.04.041

    Article  CAS  Google Scholar 

  32. Wu X, Mu F, Zhao H (2020) Recent progress in the synthesis of graphene/CNT composites and the energy-related applications. J Mater Sci Technol 55:16–34. https://doi.org/10.1016/j.jmst.2019.05.063

    Article  CAS  Google Scholar 

  33. Jha N, Jafri RI, Rajalakshmi N, Ramaprabhu S (2011) Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell. Int J Hydrogen Energy 36(12):7284–7290. https://doi.org/10.1016/j.ijhydene.2011.03.008

    Article  CAS  Google Scholar 

  34. He D, Cheng K, Peng T, Pan M, Mu S (2013) Graphene/carbon nanospheres sandwich supported PEMfuel cell metal nanocatalysts with remarkably high activity and stability. J Mater Chem A 1(6):2126–2132. https://doi.org/10.1039/C2TA00606E

    Article  CAS  Google Scholar 

  35. Lee WH, Yang HN, Park KW, Choi BS, Yi SC, Kim WJ (2016) Synergistic effect of boron/nitrogen co-doping into graphene and intercalation of carbon black for Pt-BCN-Gr/CB hybrid catalyst on cell performance of polymer electrolyte membrane fuel cell. Energy 96:314–324. https://doi.org/10.1016/j.energy.2015.12.088

    Article  CAS  Google Scholar 

  36. Park S et al (2011) Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochem commun 13(3):258–261. https://doi.org/10.1016/j.elecom.2010.12.028

    Article  CAS  Google Scholar 

  37. Li Y et al (2012) Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. J Am Chem Soc 134(30):12326–12329. https://doi.org/10.1021/ja3031449

    Article  CAS  PubMed  Google Scholar 

  38. Machuno LGB, Oliveira AR, Furlan RH, Lima AB, Morais LC, Gelamo RV (2015) Multilayer graphene films obtained by dip coating technique. Mater Res 18(4):775–780. https://doi.org/10.1590/1516-1439.005415

    Article  CAS  Google Scholar 

  39. Colmenares L et al (2006) Ethanol oxidation on novel, carbon supported Pt alloy catalysts-model studies under defined diffusion conditions. Electrochim Acta 52(1):221–233. https://doi.org/10.1016/j.electacta.2006.04.063

    Article  CAS  Google Scholar 

  40. Berretti E et al (2023) Direct alcohol fuel cells: a comparative review of acidic and alkaline systems. Electrochem Energy Rev. https://doi.org/10.1007/s41918-023-00189-3

    Article  Google Scholar 

  41. Azcoaga Chort MF, Nagel PA, Veizaga NS, Rodríguez VI, de Miguel SR (2022) Effect of Sn content on Pt/CNT electrocatalysts for direct ethanol fuel cell application. Can J Chem Eng 100(8):1848–1857. https://doi.org/10.1002/cjce.24252

    Article  CAS  Google Scholar 

  42. Rizo R, Lázaro MJ, Pastor E, García G (2016) Spectroelectrochemical study of carbon monoxide and ethanol oxidation on Pt/C, PtSn(3:1)/C and PtSn(1:1)/C catalysts. Molecules 21(9):1–12. https://doi.org/10.3390/molecules21091225

    Article  CAS  Google Scholar 

  43. Colmati F, Magalhães MM, Sousa R, Ciapina EG, Gonzalez ER (2019) Direct ethanol fuel cells: the influence of structural and electronic effects on Pt–Sn/C electrocatalysts. Int J Hydrogen Energy 44(54):28812–28820. https://doi.org/10.1016/j.ijhydene.2019.09.056

    Article  CAS  Google Scholar 

  44. Boshoman SB, Fatoba OS, Jen TC (2023) Transition metal oxides as electrocatalytic material in fuel cells: a review. Eng Sci. https://doi.org/10.30919/es948

    Article  Google Scholar 

  45. Lu N, Wang Y (2023) Alloy and media effects on the ethanol partial oxidation catalyzed by bimetallic Pt6M (M = Co, Ni, Cu, Zn, Ru, Rh, Pd, Sn, Re, Ir, and Pt). Comput Theor Chem. https://doi.org/10.1016/j.comptc.2023.114252

    Article  Google Scholar 

  46. Patil UV et al (2016) Effect of plasma treatment on multilayer graphene: X-ray photoelectron spectroscopy, surface morphology investigations and work function measurements. RSC Adv 6(54):48843–48850. https://doi.org/10.1039/C6RA03046G

    Article  CAS  Google Scholar 

  47. Queiroz MAR, Ribeiro J (2019) Catalysts of PtSn/C modified with Ru and Ta for electrooxidation of ethanol. Catalysts 9(3):277. https://doi.org/10.3390/catal9030277

    Article  CAS  Google Scholar 

  48. Schmidt TJ, Gasteiger HA, Stäb GD, Urban PM, Kolb DM, Behm RJ (1998) Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145(7):2354–2358. https://doi.org/10.1149/1.1838642

    Article  CAS  Google Scholar 

  49. Yan WY et al (2015) The influence of KOH concentration, oxygen partial pressure and temperature on the oxygen reduction reaction at Pt electrodes. J Electroanal Chem 741:100–108. https://doi.org/10.1016/j.jelechem.2014.12.044

    Article  CAS  Google Scholar 

  50. de Souza Augusto G et al (2018) Flexible metal-free supercapacitors based on multilayer graphene electrodes. Electrochim Acta 285:241–253. https://doi.org/10.1016/j.electacta.2018.07.223

    Article  CAS  Google Scholar 

  51. Vu THT, Nguyen TT, Nguyen TH, Nguyen MD, Nguyen QM (2021) A new method for synthesizing high performance few-layer graphene supported Pt electrocatalysts in methanol and ethanol oxidation. Electrochim Acta. https://doi.org/10.1016/j.electacta.2021.138258

    Article  Google Scholar 

  52. Zhang S, Song H, Li T, Luo M, Chen Y, Shao C (2023) Enhancing ethanol electrooxidation stability catalyzed by Pt with SnO2 modified graphene as support. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2023.117768

    Article  Google Scholar 

  53. Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48(3):781–787. https://doi.org/10.1016/j.carbon.2009.10.027

    Article  CAS  Google Scholar 

  54. Shen SY, Zhao TS, Xu JB (2010) Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell. Int J Hydrogen Energy 35(23):12911–12917. https://doi.org/10.1016/j.ijhydene.2010.08.107

    Article  CAS  Google Scholar 

  55. Das S, Dutta K, Kundu PP (2015) Nickel nanocatalysts supported on sulfonated polyaniline: potential toward methanol oxidation and as anode materials for DMFCs. J Mater Chem A Mater 3(21):11349–11357. https://doi.org/10.1039/C5TA01837D

    Article  CAS  Google Scholar 

  56. Zhao Y, Li X, Schechter JM, Yang Y (2016) Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. RSC Adv 6(7):5384–5390. https://doi.org/10.1039/C5RA24249E

    Article  CAS  Google Scholar 

  57. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51(4):754–763. https://doi.org/10.1016/j.electacta.2005.05.056

    Article  CAS  Google Scholar 

  58. Jiang J, Kucernak A (2003) Electrooxidation of small organic molecules on mesoporous precious metal catalysts II: CO and methanol on platinum-ruthenium alloy. J Electroanal Chem 543(2):187–199. https://doi.org/10.1016/S0022-0728(03)00046-9

    Article  CAS  Google Scholar 

  59. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51(4):754–763. https://doi.org/10.1016/j.electacta.2005.05.056

    Article  CAS  Google Scholar 

  60. Chen CC, Lin CL, Chen LC (2015) Functionalized carbon nanomaterial supported palladium nano-catalysts for electrocatalytic glucose oxidation reaction. Electrochim Acta 152:408–416. https://doi.org/10.1016/j.electacta.2014.11.116

    Article  CAS  Google Scholar 

  61. Carvalho LL, Tanaka AA, Colmati F (2018) Palladium-platinum electrocatalysts for the ethanol oxidation reaction: comparison of electrochemical activities in acid and alkaline media. J Solid State Electrochem 22(5):1471–1481. https://doi.org/10.1007/s10008-017-3856-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, F.C. grants 554569/2010-8, R. V. G. grants 440726/2020-4 and 302582/2021-5, Fapemig grant APQ-01359-21 for financial support, and the Brazilian Institute of Science and Technology (INCT) in Carbon Nanomaterials and Nacional de Grafite Ltda. T.L.B. thanks Capes from scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, TLB and FC; methodology, TLB; RVG. and FC; formal analysis, TLB and FC; investigation, TLB, resources, RVG and FC; Data curation, TLB and RVG; writing—original draft preparation, TLB; writing—review and editing, FC, RVG; supervision, FC; project administration, FC.

Corresponding author

Correspondence to Flavio Colmati.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, T.L., Gelamo, R.V. & Colmati, F. Carbon-graphene hybrid supporting platinum–tin electrocatalyst to enhance ethanol oxidation reaction. J Appl Electrochem 54, 1225–1237 (2024). https://doi.org/10.1007/s10800-023-02027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02027-2

Keywords

Navigation