Skip to main content

Advertisement

Log in

Chemically synthesized cobalt oxide incorporated copper hexacyanoferrate (Co3O4–CuHCF) composite as an efficient supercapacitor electrode material

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Copper hexacyanoferrate (CuHCF) is a promising material for energy storage systems due to its captivating features, such as its large surface area, three-dimensional absorbent network, reversible redox reactions and cost effectiveness. In order to further enhance its electrochemical properties, metal oxides, metallic ions, polymers and carbon-based materials can be incorporated. In this study, we focus on incorporating cobalt oxide (Co3O4) into copper hexacyanoferrate to improve its electrochemical behaviour. Remarkably, the study reveals that the specific capacitance of the resulting Cobalt Oxide Incorporated Copper Hexacyanoferrate (Co3O4–CuHCF) composite is as high as 1456 Fg−1 at a current density of 2 Ag−1, which is significantly higher than that of pure CuHCF (264 Fg−1 at 2 Ag−1). The Ragone plot clearly demonstrates the excellent capacitive behaviour of the Co3O4–CuHCF composite, making it a highly promising electrode material for the fabrication of inexpensive and flexible supercapacitors. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis indicate that Co3O4 sheets coated with CuHCF nanoparticles provide various electroactive surface sites that are responsible for the enhancement of electrochemical behaviour of prepared composite when employed as supercapacitor electrode material. The redox couples (Co3+/Co2+, Fe3+/Fe2+, Cu2+/Cu+) as confirmed by X-ray Photoelectron Spectroscopy (XPS) also enhance the electrochemical properties. Additionally, the composite material retains specific capacitance upto 85% of its original value even after 2500 cycles, further demonstrating its exceptional durability and stability. These findings suggest that the Co3O4–CuHCF composite has significant potential for use in high-performance energy storage applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Devi C, Swaroop R, Arya A, Tanwar S, Sharma AL, Kumar S (2022) Polym Bull 79(7):4701–4719

    Article  CAS  Google Scholar 

  2. Ahmad R, Shah MA (2023) Ceram Int 49(4):6470–6478

    Article  CAS  Google Scholar 

  3. Deng Y, Wang X, Wang Z, Wang X, Li Z, Wang L, Zhou C, Chen D, Luo Y (2021) Energy Fuels 35(6):5342–5351

    Article  CAS  Google Scholar 

  4. Li Z, Liu P, Yun G, Shi K, Lv X, Li K, Xing J, Yang B (2014) Energy 69:266–271

    Article  CAS  Google Scholar 

  5. Nandi D, Jayakumar A, Radoor S, Srisuk R, Siengchin S (2023) J Solid State Electrochem 27(1):195–206

    Article  CAS  Google Scholar 

  6. Jangid A, Verma KD, Sinha P, Kar KK (2021) In handbook of nanocomposite supercapacitor materials III: selection. Springer International Publishing, Cham, pp 159–200

    Book  Google Scholar 

  7. Nandi D, Mohan VB, Bhowmick AK, Bhattacharyya D (2020) Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review. J Mater Sci 55:6375–6400

    Article  CAS  Google Scholar 

  8. Chen J, Huang K, Liu S (2008) Electrochem Commun 10(12):1851–1855

    Article  CAS  Google Scholar 

  9. Safavi A, Kazemi SH, Kazemi H (2011) Electrochim Acta 56(25):9191–9196

    Article  CAS  Google Scholar 

  10. Babu RS, de Barros ALF, de Almeida Maier M, da Motta Sampaio D, Balamurugan J, Lee JH (2018) Compos Part B Eng 143:141–147

    Article  CAS  Google Scholar 

  11. Wang J-G, Zhang Z, Liu X, Wei B (2017) Electrochim Acta 235:114–121

    Article  CAS  Google Scholar 

  12. Targholi E, Rahmanifar MS, Mousavi-Khoshdel SM (2018) Appl Organomet Chem 32(12):e4615

    Article  Google Scholar 

  13. Shuaib U, Hussain T, Ahmad R, Imranullah M, Amjad M, Yasin A, Shakir I, Kang DJ (2023) J Solid State Electrochem 27(3):715–725

    Article  CAS  Google Scholar 

  14. Ramos MK, Zarbin AJJASS (2020) Appl Surf Sci 515:146000

    Article  CAS  Google Scholar 

  15. Kumar A, Rathore HK, Sarkar D, Shukla A (2022) Electrochem Sci Adv 2(6):e2100187

    Article  CAS  Google Scholar 

  16. Nandi D, Ghosh AK, De A, Sen P, Ghosh UC (2014) J Mater Sci 49(2):776–785

    Article  CAS  Google Scholar 

  17. Xu J, Gao L, Cao J, Wang W, Chen Z (2010) Electrochim Acta 56(2):732–736

    Article  CAS  Google Scholar 

  18. Chahal P, Madaswamy SL, Lee SC, Wabaidur SM, Dhayalan V, Ponnusamy VK, Dhanusuraman R (2022) Fuel 330:125531

    Article  CAS  Google Scholar 

  19. Tiwari N, Kadam S, Ingole R, Kulkarni S (2022) Ceram Int 48(19):29478–29483

    Article  CAS  Google Scholar 

  20. Kumar R, Youssry SM, Soe HM, Abdel-Galeil MM, Kawamura G, Matsuda A (2020) J Energy Storage 30:101539

    Article  Google Scholar 

  21. Jang G-S, Ameen S, Akhtar MS, Shin H-S (2018) Ceram Int 44(1):588–595

    Article  CAS  Google Scholar 

  22. Song Z, Liu W, Wei X, Zhou Q, Liu H, Zhang Z, Liu G, Zhao Z (2020) Chin Chem Lett 31(5): 1213–1216

  23. Song F, Huo D, Hu J, Huang H, Yuan J, Shen J, Wang A-J (2019) Nanotechnology 30(50):505401

    Article  CAS  PubMed  Google Scholar 

  24. Goda ES, Hong SE, Yoon KR (2021) J Alloy Compd 859:157868

    Article  CAS  Google Scholar 

  25. Wu M-S, Lyu L-J, Syu J-H (2015) J Power Sour 297:75–82

    Article  CAS  Google Scholar 

  26. Pawar SA, Patil DS, Shin JC (2017) J Ind Eng Chem 54:162–173

    Article  CAS  Google Scholar 

  27. Kumar B, Deeba F, Priyadarshi R, Sauraj S, Bano AK, Negi YS (2020) Polym Bull 77(9):4555–4570

    Article  CAS  Google Scholar 

  28. Nie P, Shen L, Luo H, Li H, Xu G, Zhang X (2013) Nanoscale 5(22): 11087–11093

  29. Sobhanardakani S, Jafari A, Zandipak R, Meidanchi A (2018) Process Saf Environ Prot 120:348–357

    Article  CAS  Google Scholar 

  30. Ramaraj S, Sakthivel R, Chen S-M, Palanisamy S, Velusamy V, Chen T-W, Ramaraj SK, Pandian K (2017) Int J Electrochem Sci 12(6):5567–5580

    Article  CAS  Google Scholar 

  31. Sable PB, Thabet N, Yaseen J, Botewad SN, Gaikwad D, Joshi A, Dharne G (2020) J Phys Conf Ser 1644:012016

    Article  CAS  Google Scholar 

  32. Manteghi F, Kazemi SH, Peyvandipour M, Asghari A (2015) RSC Adv 5(93): 76458–76463

  33. Hafeez M, Shaheen R, Akram B, Haq S, Mahsud S, Ali S, Khan R (2020) Mater Res Express 7(2): 025019

  34. Xu Y, Wan J, Huang L, Xu J, Ou M, Liu Y, Sun X, Li S, Fang C, Li Q Energy Stor Mater (2020) 33 432–441

  35. Liu X, Wang JJ (2021) Research 28(3):3182–3195

    CAS  Google Scholar 

  36. Rani M, Shanker U (2021) Science 584:67–79

    Google Scholar 

  37. Ehsan MA, Hakeem AS, Rehman A (2020) Electrocatalysis 11(3): 282–291

  38. Yin D, Tang J, Bai R, Yin S, Jiang M, Kan Z, Li H, Wang F, Li C (2021) Nanoscale Res Lett 16(1):1–10

  39. Smyrnioti M, Ioannides TJC (2017) Cobalt 49: 5772

  40. Kennedy LJ, Ratnaji T, Konikkara N, Vijaya JJ (2018) J Clean Prod 197:930–936

    Article  CAS  Google Scholar 

  41. Chauhan H, Singh MK, Kumar P, Hashmi SA, Deka S (2017) Nanotechnology 28(2):025401

    Article  PubMed  Google Scholar 

  42. Bello A, Barzegar F, Madito MJ, Momodu DY, Khaleed AA, Masikhwa TM, Dangbegnon JK, Manyala N (2016) RSC Adv 6(72):68141–68149

    Article  CAS  Google Scholar 

  43. Goda ES, Hong SE, Yoon KR (2021) J Alloy Compds 859:157868

    Article  CAS  Google Scholar 

  44. Bandyopadhyay P, Saeed G, Kim NH, Lee JH (2020) Chem Eng J 384:123357

    Article  CAS  Google Scholar 

  45. Brousse T, Bélanger D (2015) J W Long 162(5):A5185

    CAS  Google Scholar 

  46. Hsiao Yu-C, Yu HY, Lee PY, Yougbaré S, Lin LY, Wu YF (2022) J Energy Storage 56: 106055

  47. Yadav S, Devi A (2020) J Energy Storage 30:101486

    Article  Google Scholar 

  48. Kumar N, Yu Y-C, Lu YH, Tseng TY (2016) J Mater Sci 51(5):2320–2329

    Article  CAS  Google Scholar 

  49. Nandi D, Gnanaseelan M, Simon F, Pionteck J (2017) New J Chem 41(13):5620–5627

    Article  CAS  Google Scholar 

  50. Song Z, Liu W, Zhou Q, Zhang L, Zhang Z, Liu H, Du J, Chen J, Liu G, Zhao Z (2020) J Power Sour 465:228266

    Article  CAS  Google Scholar 

  51. Nandi D, Pulikkalparambil H, Radoor S, Jayakumar A, Kiatisereekul N, Siengchin S (2023) Chem Pap 77(1):385–397

    Article  CAS  Google Scholar 

  52. Al Kiey SA, Hasanin MS (2021) Environ Sci Pollut Res 28(47):66888–66900

    Article  CAS  Google Scholar 

  53. Devi C, Gellanki J, Pettersson H, Kumar S (2021) Sci Rep 11(1):20180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao P, Wang L, Xu Y, Fu Y, Ma X (2015) Electrochim Acta 157:359–368

    Article  CAS  Google Scholar 

  55. Salarizadeh P, Askari MB, Seifi M, Rozati SM, Eisazadeh SS (2020) Mater Sci Semicond Process 114:105078

    Article  CAS  Google Scholar 

  56. Shinde PA, Seo Y, Lee S, Kim H, Pham QN, Won Y, Chan Jun S (2020) Chem Eng J 387:122982

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The researchers wish to extend their sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah for the support provided to the Post-Publishing Program.

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

US wrote the main manuscript. TH designed the study. SA, FEM and US contributed to the sample preparation, measurements, data analysis and discussion. RA and IS contributed to experimental facilities. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tousif Hussain.

Ethics declarations

Conflict of interest

The authors declare the absence of all known competing financial interests or personal relationships which could influence this work.

Ethical approval

All procedures performed in the studies comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuaib, U., Hussain, T., Ahmad, R. et al. Chemically synthesized cobalt oxide incorporated copper hexacyanoferrate (Co3O4–CuHCF) composite as an efficient supercapacitor electrode material. J Appl Electrochem 54, 245–256 (2024). https://doi.org/10.1007/s10800-023-01957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01957-1

Keywords

Navigation