Skip to main content
Log in

Effect of Fe doping on structural, morphological and electrochemical characteristics of CuS@CNTs composite electrode material to explore the Redox mechanism in supercapattery device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs), which are classified as one-dimensional (1D) materials have attracted considerable interest in the scientific community due to their extraordinary electrical conductivity, enormous surface area, and chemical stability. Supercapattery, a device that combines the advantages of supercapacitors and batteries, has attained substantial interest due to its impressive power and energy densities. We have synthesized the binary FeCuS and FeCuS@CNTs nanocomposite through hydrothermal technique. Due to the synergistic effect, the efficiency of the electrode is improved with CNTs doping. The composite electrode FeCuS@CNTs showed an extraordinary specific capacity of 1217 Cg−1, exceeding the individual capacity values of iron sulfide (807 Cg−1) and copper sulfide (532 Cg−1). FeCuS@CNTs nanocomposite is used as the anode and activated carbon (AC) is used as the cathode in the fabrication of a supercapattery device. We achieved an extraordinary specific capacity of 342 Cg−1, surpassing previously reported values. The asymmetric device showed an extraordinary performance, with a power density (Pd) of 2352 W/Kg and an energy density (Ed) of 37 Wh/Kg. To check the cyclic stability, we evaluated the hybrid device for up to 1000 cycles, and it exhibited impressive capacity retention (CR) of 84% and Coulombic efficiency (CE) of 93%. Our results represent that FeCuS, with a 50:50 weight ratio and CNT doping, may be a better electrode material for asymmetric supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data are available on request.

References

  1. Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011)

    Article  CAS  Google Scholar 

  2. D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015)

    Article  CAS  Google Scholar 

  3. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014)

    Article  CAS  Google Scholar 

  4. A.U. Rehman et al., Highly efficient and stable layered AgZnS@WS2 nanocomposite electrode as superior charge transfer and active redox sites for energy harvesting device. J. Energy Storage 71, 108022 (2023)

    Article  Google Scholar 

  5. T. Ejaz et al., Effect of Fe doping on the structural and electrochemical performance of Zn@CuO nanostructures for energy storage device. Solid State Ionics 399, 116312 (2023)

    Article  CAS  Google Scholar 

  6. D.P. Dubal et al., Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44(7), 1777–1790 (2015)

    Article  CAS  Google Scholar 

  7. S. Khamlich et al., High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl. Surf. Sci. 405, 329–336 (2017)

    Article  CAS  Google Scholar 

  8. K. Kaviyarasu et al., Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram. Int. 42(7), 8385–8394 (2016)

    Article  CAS  Google Scholar 

  9. Z. Gan et al., One-step electrofabrication of reduced graphene oxide/poly (N-methylthionine) composite film for high performance supercapacitors. J. Electrochem. Soc. 167(8), 085501 (2020)

    Article  CAS  Google Scholar 

  10. A.M. Afzal et al., Exploring the charge storage mechanism in high-performance Co@ MnO2-based hybrid supercapacitors using Randles-Ševčík and Dunn’s models. J. Appl. Electrochem. (2023). https://doi.org/10.1007/s10800-023-01939-3

    Article  Google Scholar 

  11. M. Ali et al., Synthesis and analysis of the impact of rGO on the structural and electrochemical performance of CoMnS for high-performance energy storage device. FlatChem 40, 100518 (2023)

    Article  CAS  Google Scholar 

  12. F. Liu et al., Poly (azure C)-coated CoFe Prussian blue analogue nanocubes for high-energy asymmetric supercapacitors. J. Colloid Interface Sci. 628, 682–690 (2022)

    Article  CAS  Google Scholar 

  13. C. Wu et al., Efficient pH-universal aqueous supercapacitors enabled by an azure C-decorated N-doped graphene aerogel. J. Colloid Interface Sci. 650, 1871–1880 (2023)

    Article  CAS  Google Scholar 

  14. H. ul Hassan et al., The MOF-originated NiCu-POx/NGQD for efficient supercapattery devices and hydrogen evolution reaction. Int. J. Hydrog. Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.04.303

    Article  Google Scholar 

  15. L. Sun et al., Roles of carbon nanotubes in novel energy storage devices. Carbon 122, 462–474 (2017)

    Article  CAS  Google Scholar 

  16. Z. Cao, B.B. Wei, A perspective: carbon nanotube macro-films for energy storage. Energy Environ. Sci. 6(11), 3183–3201 (2013)

    Article  CAS  Google Scholar 

  17. A. Yasmeen et al., Cauliflower like porous structure of cobalt niobium sulfide@ carbon nanotubes for electrode materials to enhance the redox activity in the battery-supercapacitor hybrid device. Appl. Nanosci. 13(9), 6471–6487 (2023)

    Article  CAS  Google Scholar 

  18. A. Eftekhari, Tungsten dichalcogenides (WS 2, WSe 2, and WTe 2): materials chemistry and applications. J. Mater. Chem. A 5(35), 18299–18325 (2017)

    Article  CAS  Google Scholar 

  19. Y. Zhu et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011)

    Article  CAS  Google Scholar 

  20. H.U. Hassan et al., Highly stable binary composite of nickel silver sulfide (NiAg2S) synthesized using the hydrothermal approach for high-performance supercapattery applications. Int. J. Energy Res. 46(8), 11346–11358 (2022)

    Article  CAS  Google Scholar 

  21. M.Z. Iqbal et al., Optimizing electrochemical performance of sonochemically and hydrothermally synthesized cobalt phosphate for supercapattery devices. Int. J. Hydrogen Energy 46(29), 15807–15819 (2021)

    Article  CAS  Google Scholar 

  22. J. Jean et al., Pathways for solar photovoltaics. Energy Environ. Sci. 8(4), 1200–1219 (2015)

    Article  CAS  Google Scholar 

  23. V. Nicolosi et al., Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013)

    Article  Google Scholar 

  24. M. Ali et al., 2D-TMDs based electrode material for supercapacitor applications. Int. J. Energy Res. 46(15), 22336–22364 (2022)

    Article  CAS  Google Scholar 

  25. S. Tanwar et al., Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. J. Phys.: Condens. Matter 33(30), 303002 (2021)

    CAS  Google Scholar 

  26. H. Tan et al., Large-scale carambola-like V2O5 nanoflowers arrays on microporous reed carbon as improved electrochemical performances lithium-ion batteries cathode. J. Energy Chem. 51, 388–395 (2020)

    Article  Google Scholar 

  27. Y. Yan et al., Vanadium based materials as electrode materials for high performance supercapacitors. J. Power Sources 329, 148–169 (2016)

    Article  CAS  Google Scholar 

  28. X. Xu et al., Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv. Func. Mater. 30(10), 1904398 (2020)

    Article  CAS  Google Scholar 

  29. P. He et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018)

    Article  Google Scholar 

  30. M. Yan et al., Water-lubricated intercalation in V2O5· nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018)

    Article  Google Scholar 

  31. N. Zhang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018)

    Article  CAS  Google Scholar 

  32. X. Xu et al., Bilayered Mg0. 25V2O5 H2O as a stable cathode for rechargeable Ca-ion batteries. ACS Energy Lett. 4(6), 1328–1335 (2019)

    Article  CAS  Google Scholar 

  33. K. Huang et al., Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018)

    Article  CAS  Google Scholar 

  34. X. Xu et al., Alkaline earth metal vanadates as sodium-ion battery anodes. Nat. Commun. 8(1), 460 (2017)

    Article  Google Scholar 

  35. L. Zhou et al., Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv. Mater. 30(32), 1801984 (2018)

    Article  Google Scholar 

  36. M. Bhushan et al., Ethylenediamine-assisted growth of multi-dimensional ZnS nanostructures and study of its charge transfer mechanism on supercapacitor electrode and photocatalytic performance. Nanotechnology 31(23), 235602 (2020)

    Article  CAS  Google Scholar 

  37. R. Balu, S. Sagadevan, A. Dakshanamoorthy, A cost effective, facile hydrothermal approach of zinc sulfide decorated on graphene nanocomposite for supercapacitor applications. J. Nanosci. Nanotechnol. 19(11), 6987–6994 (2019)

    Article  CAS  Google Scholar 

  38. A. Arulraj et al., Direct synthesis of cubic shaped Ag2S on Ni mesh as binder-free electrodes for energy storage applications. Sci. Rep. 9(1), 10108 (2019)

    Article  Google Scholar 

  39. B. Cao et al., MOF-derived ZnS nanodots/Ti 3 C 2 T x MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13, 1–17 (2021)

    Article  Google Scholar 

  40. L. Yao, S. Ju, X. Yu, Rational surface engineering of MXene@N-doped hollow carbon dual-confined cobalt sulfides/selenides for advanced aluminum batteries. J. Mater. Chem. A 9(31), 16878–16888 (2021)

    Article  CAS  Google Scholar 

  41. X. Li et al., Rational design and construction of iron oxide and titanium carbide MXene hierarchical structure with promoted energy storage properties for flexible battery. J. Colloid Interface Sci. 631, 182–190 (2023)

    Article  CAS  Google Scholar 

  42. D.Y. Kim et al., Controllable pore structures of pure and sub-millimeter-long carbon nanotubes. Appl. Surf. Sci. 566, 150751 (2021)

    Article  CAS  Google Scholar 

  43. M. Li, Q. Wu, J. Shi, A simple route to synthesize CuS framework with porosity. J. Alloy. Compd. 489(2), 343–347 (2010)

    Article  CAS  Google Scholar 

  44. M.S. Rahmanifar et al., A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochim. Acta 275, 76–86 (2018)

    Article  CAS  Google Scholar 

  45. M.Z. Iqbal et al., A facile approach to investigate the charge storage mechanism of MOF/PANI based supercapattery devices. Solid State Ionics 354, 115411 (2020)

    Article  CAS  Google Scholar 

  46. M. Azadfalah, A. Sedghi, H. Hosseini, Synthesis of nano-flower metal-organic framework/graphene composites as a high-performance electrode material for supercapacitors. J. Electron. Mater. 48(11), 7011–7024 (2019)

    Article  CAS  Google Scholar 

  47. M.S. Javed et al., A high-performance flexible solid-state supercapacitor based on Li-ion intercalation into tunnel-structure iron sulfide. Electrochim. Acta 219, 742–750 (2016)

    Article  CAS  Google Scholar 

  48. I. Hussain et al., Uniform growth of ZnS nanoflakes for high-performance supercapacitor applications. J. Energy Storage 36, 102408 (2021)

    Article  Google Scholar 

  49. Q. Cheng et al., Ultrathin Ni-MOF nanosheet arrays grown on polyaniline decorated Ni foam as an advanced electrode for asymmetric supercapacitors with high energy density. Dalton Trans. 48(13), 4119–4123 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Researchers Supporting Project number (RSP2023R407),

King Saud University, Riyadh, Saudi Arabia, for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

MAY, HH, NM and AMA worked on experiment, data collection, analysis, and interpretation of results. MAY, HH, NM, AMA, MWI, AAG, SM, SAM, FA, MZY, AZ, and ZA performed the calculation and write the manuscript and helped during the calculation process and reviewed the manuscript.

Corresponding authors

Correspondence to Amir Muhammad Afzal or Zubair Ahmad.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

The submitted work should be original and should not have been published elsewhere in any form or language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasir, M.A., Hassan, H., Muzaffar, N. et al. Effect of Fe doping on structural, morphological and electrochemical characteristics of CuS@CNTs composite electrode material to explore the Redox mechanism in supercapattery device. J Mater Sci: Mater Electron 34, 2266 (2023). https://doi.org/10.1007/s10854-023-11695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11695-x

Navigation