Skip to main content
Log in

Role of metal (Cu/Ni/Fe/Co)-carbon composite in enhancing electro-oxidation of ethylene glycol

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study investigated the nano-metals (Cu, Ni, Co or Fe) and carbon composite catalysts for electro-oxidation of ethylene glycol (EG) both in acidic and basic medium. The physical surface area varied between 379 and 615 m2 g−1, while the electrochemical surface area was in the range of 20.8–44.3 m2 g−1. The average metal size ranged from 7.8 to 16.3 nm confirming the nano-metal structure. The work function values of different electrocatalysts were between 4.21 and 4.56 eV. The highest current density of 11 mA cm−2 was observed for 20Ni-AC in basic medium at 1 V in presence of EG, followed by that of 20Cu-AC (6.9 mA cm−2), 20Co-AC (6.6 mA cm−2) and 20Fe-AC (5.9 mA cm−2). The current density of the composite catalysts was much enhanced compared to individual components. The performance was directly related to the electrochemical surface area of the catalysts as well as work function values, and ability to form higher oxidation states of the catalysts. Time constants (τ1, τ2) obtained from EIS analysis revealed that the electrochemical process was the slower step in both acidic and basic mediums. The 20Ni-AC showed structural stability as anode electrode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hameed RA, El-Sherif RM (2015) Microwave irradiated nickel nanoparticles on Vulcan XC-72R carbon black for methanol oxidation reaction in KOH solution. Appl Catal B 162:217–226. https://doi.org/10.1016/j.apcatb.2014.06.057

    Article  CAS  Google Scholar 

  2. Soliman AB, Abdel-Samad HS, Rehim SSA, Ahmed MA, Hassan HH (2016) High performance nano-Ni/graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells. J Power Sources 325:653–663. https://doi.org/10.1016/j.jpowsour.2016.06.088

    Article  CAS  Google Scholar 

  3. Velázquez-Hernández I, Lair V, Cassir M, Arriaga LG, Álvarez-Contreras L, Guerra-Balcázar M, Arjona N (2020) Ethanol electro-oxidation and spectroelectrochemical analysis of highly active sub< 10 nm PdFe2O3, PdPt and PdAu bimetallic nanoparticles. Int J Hydrog Energy 45:9758–9772. https://doi.org/10.1016/j.ijhydene.2020.02.005

    Article  CAS  Google Scholar 

  4. Li J, Zhou Z, Xu H, Wang C, Hata S, Dai Z, Shiraishi Y, Du Y (2022) In situ nanopores enrichment of Mesh-like palladium nanoplates for bifunctional fuel cell reactions: a joint etching strategy. J Colloid Interface Sci 611:523–532. https://doi.org/10.1016/j.jcis.2021.12.111

    Article  CAS  PubMed  Google Scholar 

  5. Behbahani ES, Eshghi A, Ghaedi M (2021) Bimetallic PtPd nanoparticles relying on CoNiO2 and reduced graphene oxide as a most operative electrocatalyst toward ethanol fuel oxidation. Int J Hydrog Energy 46:24977–24990. https://doi.org/10.1016/j.ijhydene.2021.04.190

    Article  CAS  Google Scholar 

  6. Eshghi A, Kheirmand M (2019) Electroplating of Pt–Ni–Cu nanoparticles on glassy carbon electrode for glucose electro-oxidation process. Surf Eng 35:128–134. https://doi.org/10.1080/02670844.2018.1490070

    Article  CAS  Google Scholar 

  7. Das D, Samaddar PR, Sen PK, Das K (2008) Oxidation of some aliphatic polyols on anodically deposited MnO2. J Appl Electrochem 38:743–749. https://doi.org/10.1007/s10800-008-9503-9

    Article  CAS  Google Scholar 

  8. Qi J, Benipal N, Liang C, Li W (2016) PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol= methanol, ethanol, ethylene glycol and glycerol). Appl Catal B 199:494–503. https://doi.org/10.1016/j.apcatb.2016.06.055

    Article  CAS  Google Scholar 

  9. Neto A, Vasconcelos TR, Da Silva R, Linardi M, Spinacé E (2005) Electro-oxidation of ethylene glycol on PtRu/C and PtSn/C electrocatalysts prepared by alcohol-reduction process. J Appl Electrochem 35:193–198. https://doi.org/10.1007/s10800-004-5824-5

    Article  CAS  Google Scholar 

  10. Kannan R, Kim AR, Yoo DJ (2014) Enhanced electrooxidation of methanol, ethylene glycol, glycerol, and xylitol over a polypyrrole/manganese oxyhydroxide/palladium nanocomposite electrode. J Appl Electrochem 44:893–902. https://doi.org/10.1007/s10800-014-0706-y

    Article  CAS  Google Scholar 

  11. Vyas AN, Saratale GD, Sartale SD (2020) Recent developments in nickel based electrocatalysts for ethanol electrooxidation. Int J Hydrog Energy 45:5928–5947. https://doi.org/10.1016/j.ijhydene.2019.08.218

    Article  CAS  Google Scholar 

  12. Wang C, Shang H, Li J, Wang Y, Xu H, Wang C, Guo J, Du Y (2021) Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis. Chem Eng J 420:129805. https://doi.org/10.1016/j.cej.2021.129805

    Article  CAS  Google Scholar 

  13. Yu R, Wang C, Liu D, Wu Z, Li J, Du Y (2022) Bimetallic sulfide particles incorporated in Fe/Co-based metal–organic framework ultrathin nanosheets toward boosted electrocatalysis of the oxygen evolution reaction. Inorg Chem Front 9:3130–3137. https://doi.org/10.1039/D2QI00125J

    Article  CAS  Google Scholar 

  14. Ullah N, Xie M, Oluigbo CJ, Xu Y, Xie J, Rasheed HU, Zhang M (2019) Nickel and cobalt in situ grown in 3-dimensional hierarchical porous graphene for effective methanol electro-oxidation reaction. J Electroanal Chem 838:7–15. https://doi.org/10.1016/j.jelechem.2019.02.022

    Article  CAS  Google Scholar 

  15. Pawar S, Pawar B, Inamdar A, Kim J, Jo Y, Cho S, Mali S, Hong C, Kwak J, Kim H (2017) In-situ synthesis of Cu(OH)2 and CuO nanowire electrocatalysts for methanol electro-oxidation. Mater Lett 187:60–63. https://doi.org/10.1016/j.matlet.2016.10.079

    Article  CAS  Google Scholar 

  16. Mohamed MM, Syam S, Khairy M (2022) Extremely efficient methanol oxidation reaction performance: a highly active catalyst derived from different Mn2-xOy phases-supported Ag@Ag2WO4. Electrochim Acta 437:141528. https://doi.org/10.1016/j.electacta.2022.141528

    Article  CAS  Google Scholar 

  17. Chen G-F, Luo Y, Ding L-X, Wang H (2018) Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal 8:526–530. https://doi.org/10.1021/acscatal.7b03319

    Article  CAS  Google Scholar 

  18. Hassen D, El-Safty SA, Tsuchiya K, Chatterjee A, Elmarakbi A, Shenashen M, Sakai M (2016) Longitudinal hierarchy Co3O4 mesocrystals with high-dense exposure facets and anisotropic interfaces for direct-ethanol fuel cells. Sci Rep 6:1–12. https://doi.org/10.1038/srep24330

    Article  CAS  Google Scholar 

  19. Vattikuti SVP, Nagajyothi PC, Devarayapalli KC, Shim J (2020) Depositing reduced graphene oxide onto tungsten disulfide nanosheets via microwave irradiation: confirmation of four-electron transfer-assisted oxygen reduction and methanol oxidation reaction. New J Chem 44:10638–10647. https://doi.org/10.1039/D0NJ01097A

    Article  CAS  Google Scholar 

  20. Yu Y, Zhai M, Hu J (2019) Electrocatalytic oxidation of ethanol and ethylene glycol on bimetallic Ni and Ti nanoparticle-modified indium tin oxide electrode in alkaline solution. Prog Nat Sci 29:511–516. https://doi.org/10.1016/j.pnsc.2019.09.002

    Article  CAS  Google Scholar 

  21. Fa D, Miao Y (2020) Synthesis of NiHPO4–Ni(OH)2 nanowire-assembled bouquets for electrocatalytic oxidation of methanol and urea. J Appl Electrochem 50:1091–1099. https://doi.org/10.1007/s10800-020-01463-8

    Article  CAS  Google Scholar 

  22. Gu Y, Yu Z, Wu S, Gao P, Hu Y, Zhang C, Xu Z, Li J, An Y (2020) Eggshell-membrane-templated synthesis of C, S Doped Mesoporous NiO for methanol oxidation in alkaline solution. J Appl Electrochem 50:821–834. https://doi.org/10.1007/s10800-020-01438-9

    Article  CAS  Google Scholar 

  23. Theres GS, Velayutham G, Suresh C, Krishnan PS, Shanthi K (2020) Promotional effect of Ni–Co/ordered mesoporous carbon as non-noble hybrid electrocatalyst for methanol electro-oxidation. J Appl Electrochem 50:639–653. https://doi.org/10.1007/s10800-020-01412-5

    Article  CAS  Google Scholar 

  24. Cui X, Guo W, Zhou M, Yang Y, Li Y, Xiao P, Zhang Y, Zhang X (2015) Promoting effect of Co in NimCon (m+n=4) bimetallic electrocatalysts for methanol oxidation reaction. ACS Appl Mater Interfaces 7:493–503. https://doi.org/10.1021/am506554b

    Article  CAS  PubMed  Google Scholar 

  25. Ghouri ZK, Barakat NA, Kim HY (2015) Influence of copper content on the electrocatalytic activity toward methanol oxidation of CoχCuy alloy nanoparticles-decorated CNFs. Sci Rep 5:1–12. https://doi.org/10.1038/srep16695

    Article  CAS  Google Scholar 

  26. Rajeshkhanna G, Rao GR (2018) Micro and nano-architectures of Co3O4 on Ni foam for electro-oxidation of methanol. Int J Hydrog Energy 43:4706–4715. https://doi.org/10.1016/j.ijhydene.2017.10.110

    Article  CAS  Google Scholar 

  27. Hosseini SR, Ghasemi S, Kamali-Rousta M, Nabavi SR (2017) Preparation of NiO nanofibers by electrospinning and their application for electro-catalytic oxidation of ethylene glycol. Int J Hydrog Energy 42:906–913. https://doi.org/10.1016/j.ijhydene.2016.09.116

    Article  CAS  Google Scholar 

  28. Lin Q, Wei Y, Liu W, Yu Y, Hu J (2017) Electrocatalytic oxidation of ethylene glycol and glycerol on nickel ion implanted-modified indium tin oxide electrode. Int J Hydrog Energy 42:1403–1411. https://doi.org/10.1016/j.ijhydene.2016.10.011

    Article  CAS  Google Scholar 

  29. Hameed RA, Abutaleb A, Zouli N, Yousef A (2022) Facile synthesis of electrospun transition metallic nanofibrous mats with outstanding activity for ethylene glycol electro-oxidation in alkaline solution. Mol Catal 522:112186. https://doi.org/10.1016/j.mcat.2022.112186

    Article  CAS  Google Scholar 

  30. Gayathri A, Kiruthika S, Selvarani V, AlSalhi MS, Devanesan S, Kim W, Muthukumaran B (2022) Evaluation of iron-based alloy nanocatalysts for the electrooxidation of ethylene glycol in membraneless fuel cells. Fuel 321:124059. https://doi.org/10.1016/j.fuel.2022.124059

    Article  CAS  Google Scholar 

  31. Singh SB, De M (2018) Alumina based doped templated carbons: a comparative study with zeolite and silica gel templates. Microporous Mesoporous Mater 257:241–252. https://doi.org/10.1016/j.micromeso.2017.08.047

    Article  CAS  Google Scholar 

  32. Iida H, Igarashi A (2006) Characterization of a Pt/TiO2 (rutile) catalyst for water gas shift reaction at low-temperature. Appl Catal A: Gen 298:152–160. https://doi.org/10.1016/j.apcata.2005.09.032

    Article  CAS  Google Scholar 

  33. McCrory CC, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987. https://doi.org/10.1021/ja407115p

    Article  CAS  PubMed  Google Scholar 

  34. Shi SQ, Che W, Liang K, Xia C, Zhang D (2015) Phase transitions of carbon-encapsulated iron oxide nanoparticles during the carbonization of cellulose at various pyrolysis temperatures. J Anal Appl Pyrolysis 115:1–6. https://doi.org/10.1016/j.jaap.2015.05.010

    Article  CAS  Google Scholar 

  35. Patel MA, Luo F, Khoshi MR, Rabie E, Zhang Q, Flach CR, Mendelsohn R, Garfunkel E, Szostak M, He H (2016) P-doped porous carbon as metal free catalysts for selective aerobic oxidation with an unexpected mechanism. ACS Nano 10:2305–2315. https://doi.org/10.1021/acsnano.5b07054

    Article  CAS  PubMed  Google Scholar 

  36. Zhang L, Tu L-Y, Liang Y, Chen Q, Li Z-S, Li C-H, Wang Z-H, Li W (2018) Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv 8:42280–42291. https://doi.org/10.1039/C8RA08990F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu H, Yan B, Yang J, Li S, Wang J, Du Y, Ren F (2018) Exceptional ethylene glycol electrooxidation activity enabled by sub-16 nm dendritic Pt–Cu nanocrystals catalysts. Int J Hydrog Energy 43:1489–1496. https://doi.org/10.1016/j.ijhydene.2017.12.016

    Article  CAS  Google Scholar 

  38. Biesinger MC, Payne BP, Grosvenor AP, Lau LW, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  39. Mills P, Sullivan J (1983) A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J Phys D 16:723. https://doi.org/10.1088/0022-3727/16/5/005

    Article  CAS  Google Scholar 

  40. Zafeiratos S, Dintzer T, Teschner D, Blume R, Hävecker M, Knop-Gericke A, Schlögl R (2010) Methanol oxidation over model cobalt catalysts: influence of the cobalt oxidation state on the reactivity. J Catal 269:309–317. https://doi.org/10.1016/j.jcat.2009.11.013

    Article  CAS  Google Scholar 

  41. Ebersbach U, Schwabe K, Ritter K (1967) On the kinetics of the anodic passivation of iron, cobalt and nickel. Electrochim Acta 12:927–938. https://doi.org/10.1016/0013-4686(67)80093-8

    Article  CAS  Google Scholar 

  42. Kim J-W, Park S-M (2005) Electrochemical oxidation of ethanol at nickel hydroxide electrodes in alkaline media studied by electrochemical impedance spectroscopy. J Korean Electrochem Soc 8:117–124. https://doi.org/10.5229/JKES.2005.8.3.117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CIF, IIT Guwahati for providing the facility for instrumental analysis.

Author information

Authors and Affiliations

Authors

Contributions

Saptarshi Gupta: Conceptualization, Methodology, Investigation, Manuscript preparation, Software, Formal analysis. Mahuya De: Supervision, Funding acquisition, Visualization, Manuscript review & editing, Validation.

Corresponding author

Correspondence to Mahuya De.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7825 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., De, M. Role of metal (Cu/Ni/Fe/Co)-carbon composite in enhancing electro-oxidation of ethylene glycol. J Appl Electrochem 53, 1795–1809 (2023). https://doi.org/10.1007/s10800-023-01883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01883-2

Keywords

Navigation