Skip to main content
Log in

Promotional effect of Ni–Co/ordered mesoporous carbon as non-noble hybrid electrocatalyst for methanol electro-oxidation

  • RESEARCH ARTICLE
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The development of a ternary hybrid catalytic system, inclusive of Ni species/Co species/ordered mesoporous carbon (catalyst/co-catalyst/support) and its promotional & synergistic impact towards methanol electro-oxidation has been reported. High surface area, soft template synthesized, ordered Mesoporous Carbon, was used as a scaffold. 15 wt% of Ni or/& Co was/were deposited onto the pre-synthesized carbon scaffold in varying ratios viz. Ni, 1Ni3Co (1:3), 1Ni1Co (1:1), 3Ni1Co (3:1) and Co. Via physicochemical characterization techniques, the phase purity, specific surface area, the extent of agglomeration, and its chemical functionality were quantified. Cyclic Voltammetry, Electrochemical Impedance, and Chronoamperometry techniques collectively exhibited the synergistic impact and the benefit of mixing the two metal systems (Ni & Co) together. Two identical sets of catalysts were synthesized; one from metal nitrate & the other from metal chloride precursors. Highest current density (151.51 mA cm−2) & lowest onset potential (0.27 V) values were recorded when Ni:Co was taken in 1:3 elemental wt% ratio & synthesized from the nitrate based inorganic metal precursors; this observation can be attributed to the higher content of amorphous borate shell layer formed in the nitrate as compared to the chloride precursor based catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kamarudin SK, Daud WRW, Ho SL, Hasran UA (2007) Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). J Power Sources 163:743–754

    Article  CAS  Google Scholar 

  2. Brouzgou A, Song SQ, Tsiakaras P (2012) Low and non-platinum electrocatalysts for PEMFCs: current status, challenges, and prospects. Appl Catal B 127:371–388

    Article  CAS  Google Scholar 

  3. Akhairi MAF, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrogen Energy 41:4214–4228

    Article  CAS  Google Scholar 

  4. Kim J, Momma J, Osaka J (2009) Cell performance of Pd–Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane. J Power Sources 189:999–1002

    Article  CAS  Google Scholar 

  5. Bunazawa H, Yamazaki Y (2009) Ultrasonic synthesis and evaluation of non-platinum catalysts for alkaline direct methanol fuel cells. J Power Sources 190:210–215

    Article  CAS  Google Scholar 

  6. Kumar P, Dutta K, Das S, Kundu PP (2014) An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use. Int J Energy Res 38:1367–1390

    Article  CAS  Google Scholar 

  7. Falcao DS, Oliveira VB, Rangel CM, Pinto AMFR (2014) Review on micro-direct methanol fuel cells. Renew Sustain Energy Rev 34:58–70

    Article  CAS  Google Scholar 

  8. Vidakovic T, Christov M, Sundmacher K (2005) Rate expression for electrochemical oxidation of methanol on a direct methanol fuel cell anode. J Electroanal Chem 580:105–121

    Article  CAS  Google Scholar 

  9. Schultz T, Krewer U, Vidakovic T, Pfafferodt M, Christov M, Sundmacher K (2007) Systematic analysis of the direct methanol fuel cell. J Appl Electrochem 37:111–119

    Article  CAS  Google Scholar 

  10. Arico AS, Baglio V, Blasi AD, Modica E, Antonucci PL, Antonucci V (2003) Analysis of the high-temperature methanol oxidation behaviour at carbon-supported Pt-Ru catalysts. J Electroanal Chem 557:167–176

    Article  CAS  Google Scholar 

  11. Shukla AK, Raman RK, Scott K (2005) Advances in mixed reactant fuel cells. Fuel Cells 5:436–447

    Article  CAS  Google Scholar 

  12. Huang W, Wang H, Zhou J, Wang J, Duchesne PN, Muir D, Zhang P, Han N, Zhao F, Zeng M, Zhong J, Jin C, Li Y, Lee S-T, Dai H (2015) Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nat Commun. https://doi.org/10.1038/ncomms10035

    Article  PubMed  PubMed Central  Google Scholar 

  13. Das S, Dutta K, Kundu PP (2015) Nickel nanocatalysts supported on sulfonated polyaniline: potential toward methanol oxidation and as anode materials for DMFCs. J Mater Chem A 3:11349–11357

    Article  CAS  Google Scholar 

  14. Cui X, Guo W, Zhou M, Yang Y, Li Y, Xiao P, Zhang Y, Zhang X (2014) Promoting effect of Co in NimCon (m + n = 4) bimetallic electrocatalysts for methanol oxidation reaction. ACS Appl Mater Interfaces 7:493–503

    Article  PubMed  CAS  Google Scholar 

  15. Pachamuthu MP, Srinivasan VV, Maheswari R, Shanthi K, Ramanathan A (2013) The impact of the copper source on the synthesis of meso-structured CuTUD-1: a promising catalyst for phenol hydroxylation. Catal Sci Technol 3:3335–3342

    Article  CAS  Google Scholar 

  16. Kusama H, Bando KK, Okabe K, Arakawa H (2001) CO2 hydrogenation reactivity and structure of Rh/SiO2 catalysts prepared from acetate, chloride and nitrate precursors. Appl Catal A 205:285–294

    Article  CAS  Google Scholar 

  17. Fang K, Ren J, Sun Y (2005) Effect of nickel precursors on the performance of Ni/AlMCM-41 catalysts for n-dodecane hydroconversion. J Mol Catal A 229:51–58

    Article  CAS  Google Scholar 

  18. Bruno MM, Planes GA, Miras MC, Barbero CA, Pastor Tejera E, Rodriguez JL (2010) Synthetic porous carbon as support of platinum nanoparticles for fuel cell electrodes. Mol Cryst Liq Cryst 521:229–236

    Article  CAS  Google Scholar 

  19. Bruno MM, Franceschini EA, Planes GA, Corti HR (2010) Electrodeposited platinum catalysts over hierarchical carbon monolithic support. J Appl Electrochem 40:257–263

    Article  CAS  Google Scholar 

  20. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Ordered mesoporous carbons. Adv Mater 13:677–681

    Article  CAS  Google Scholar 

  21. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094

    Article  CAS  Google Scholar 

  22. Liu D, Lei J-H, Guo L-P, Qu D, Li Y, Su B-L (2012) One-pot aqueous route to synthesize highly ordered cubic and hexagonal mesoporous carbons from resorcinol and hexamine. Carbon 50:476–487

    Article  CAS  Google Scholar 

  23. Sonia Theres G, Velayutham G, Santhana Krishnan P, Shanthi K (2019) Synergistic impact of Ni–Cu hybrid oxides deposited on ordered mesoporous carbon scaffolds as non-noble catalyst for methanol oxidation. J Mater Sci 54:1502–1519

    Article  CAS  Google Scholar 

  24. Garron A, Swierczynski D, Bennici S, Auroux A (2009) New insights into the mechanism of H2 generation through NaBH4 hydrolysis on Co-based nanocatalysts studied by differential reaction calorimetry. Int J Hydrogen Energy 34:1185–1199

    Article  CAS  Google Scholar 

  25. Demirci UB, Miele P (2010) Cobalt in NaBH4 hydrolysis. Phys Chem Chem Phys 12:14651–14665

    Article  CAS  PubMed  Google Scholar 

  26. Jin Y, Zhang W, Kharel PR, Valloppilly SR, Skomski R, Sellmyer DJ (2016) Effect of boron doping on nanostructure and magnetism of rapidly quenched Zr2Co11-based alloys. AIP Adv 10(1063/1):4942556

    Google Scholar 

  27. Chen C-H, Lai J-D, Tsai C-Y, Feng S-W, Cheng T-H, Wang H-C, Tu L-W (2019) Growth, characterization, and analysis of the nanostructures of ZnO: B thin films grown on ITO glass substrates by a LPCVD: a study on the effects of boron doping. J Mater Sci 30(6):5698–5705. https://doi.org/10.1007/s10854-019-00863-7

    Article  CAS  Google Scholar 

  28. Khan IA, Qian Y, Badshah A, Nadeem MA, Zhao D (2016) Highly porous carbon derived from MOF-5 as a support of ORR electrocatalysts for fuel cells. ACS Appl Mater Interfaces 8:17268–17275

    Article  CAS  PubMed  Google Scholar 

  29. Yu J, Guo M, Muhammad F, Wang A, Yu G, Ma H, Zhu G (2014) Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol-melamine-formaldehyde resin. Microporous Mesoporous Mater 190:117–127

    Article  CAS  Google Scholar 

  30. Corrias A, Ennas G, Musinu A, Marongiu G, Paschina G (1993) Amorphous transition metal-boron ultrafine particles prepared by chemical methods. Chem Mater 5:1722–1726

    Article  CAS  Google Scholar 

  31. Andrieux J, Swierczynski D, Laversenne L, Garron A, Bennici S, Goutaudier C, Miele P, Auroux A, Bonnetot B (2009) A multifactor study of catalyzed hydrolysis of solid NaBH4 on cobalt nanoparticles: Thermodynamics and kinetics. Int J Hydrogen Energy 34:938–951

    Article  CAS  Google Scholar 

  32. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2012) The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys Chem Chem Phys 14:2434–2442

    Article  CAS  PubMed  Google Scholar 

  33. Yang JH, Wang C, Yang D, Li X, Shang P, Li Y, Ma D (2014) Boron-doped α-Ni(OH)2 nanoflowers with high specific surface area as electrochemical capacitor materials. Mater Lett 128:380–383

    Article  CAS  Google Scholar 

  34. McIntyre NS, Cook MG (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47:2208–2213

    Article  CAS  Google Scholar 

  35. Tan T, Han P, Cong H, Cheng G, Luo W (2019) An amorphous cobalt borate nanosheets coated cobalt boride hybrid for highly efficient alkaline water oxidation reaction. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.9b00258

    Article  PubMed  PubMed Central  Google Scholar 

  36. Perini L, Durante C, Favaro M, Perazzolo V, Agnoli S, Schneider O, Granozzi G, Gennaro A (2015) Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl Mater Interfaces 7:1170–1179

    Article  CAS  PubMed  Google Scholar 

  37. Ren X, Ge R, Zhang Y, Liu D, Wu D, Sun X, Du B, Wei Q (2017) Cobalt-borate nanowire array as a high-performance catalyst for oxygen evolution reaction in near-neutral media. J Mater Chem A 5:7291–7294

    Article  CAS  Google Scholar 

  38. Jafarian M, Moghaddam RB, Mahjani MG, Gobal F (2006) Electro-catalytic oxidation of methanol on a Ni-Cu alloy in alkaline medium. J Appl Electrochem 36:913–918

    Article  CAS  Google Scholar 

  39. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2008) Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrogen Energy 33:4367–4376

    Article  CAS  Google Scholar 

  40. Park JH, Park OO, Shin KH, Jin CS, Kim JH (2002) An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem Solid-State Lett 5:H7–H10

    Article  CAS  Google Scholar 

  41. Aloqayli S, Ranaweera CK, Wang Z, Siam K, Kahol PK, Tripathi P, Srivastava ON, Gupta BK, Mishra SR, Perez F, Shen X, Gupta RK (2017) Nanostructured cobalt oxide and cobalt sulfide for flexible, high performance and durable supercapacitors. Energy Storage Mater 8:68–76

    Article  Google Scholar 

  42. Ghouri ZK, Barakat NAM, Kim HY (2015) Influence of copper content on the electrocatalytic activity toward methanol oxidation of CoχCuy alloy nanoparticles-decorated CNFs. Sci Rep 5:16695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abdel Rahim MA, Abdel Hameed RM, Khalil MW (2004) Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J Power Sources 134:160–169

    Article  CAS  Google Scholar 

  44. Thamer BM, El-Newehy MH, Al-Deyab SS, Abdelkareem MA, Kim HY, Barakat NAM (2015) Cobalt-incorporated, nitrogen-doped carbon nanofibers as effective non-precious catalyst for methanol electrooxidation in alkaline medium. Appl Catal A 498:230–240

    Article  CAS  Google Scholar 

  45. Glavee GN, Klabunde KJ, Sorensen CM, Hadjapanayis GC (1992) Borohydride reductions of metal ions. A new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates. Langmuir 8:771–773

    Article  CAS  Google Scholar 

  46. Barakat NAM, El-Newehy M, Al-Deyab SS, Kim H (2014) Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation. Nanoscale Res Lett 9:2–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bagotzky VS, Vassilyev YB (1967) Mechanism of electro-oxidation of methanol on the platinum electrode. Electrochim Acta 12:1323–1343

    Article  Google Scholar 

  48. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M (2009) Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode. Int J Hydrogen Energy 34:859–869

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the laboratory facilities provided in the Department of Chemistry, Anna University and for the electrochemical characterization facilities provided at Sainergy Fuel Cell India Private Limited, Chennai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shanthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1742 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theres, G.S., Velayutham, G., Suresh, C. et al. Promotional effect of Ni–Co/ordered mesoporous carbon as non-noble hybrid electrocatalyst for methanol electro-oxidation. J Appl Electrochem 50, 639–653 (2020). https://doi.org/10.1007/s10800-020-01412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01412-5

Keywords

Navigation