Skip to main content

Effects of sp2- and sp3-carbon coatings on dissolution and electrochemistry of water-based LiFePO4 cathodes

Abstract

Lithium iron phosphate (LiFePO4) is recognized as being less stable and easily dissolvable in aqueous suspensions, particularly when the suspension pH is adjusted to be more alkaline or acidic. In this investigation, an unexpected and interesting finding is revealed, which contradicts the conventional understanding of the dissolution of LiFePO4. As most of the surface of commercial LiFePO4 is coated with carbon, the key factor determining its dissolution behavior is the chemical quality of the surface carbon. With more sp2-bonded carbon on the surface, both the dissolution and electrochemistry of LiFePO4 are independent of pH variations in aqueous suspensions. When the surface carbon is mainly sp3-bonded, LiFePO4 exhibits distinct dissolution and electrochemical properties at different pH levels and, under alkaline conditions, shows greater dissolution and poorer cell performance than that characterized mainly by sp2-bonded carbon.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    CAS  Article  Google Scholar 

  2. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229

    CAS  Article  Google Scholar 

  3. Iltchev N, Chen Y, Okada S, Yamaki JI (2003) LiFePO4 storage at room and elevated temperatures. J Power Sources 119–121:749–754

    Article  Google Scholar 

  4. Arnold G, Garche J, Hemmer R, Ströbele S, Vogler C, Wohlfahrt-Mehrens M (2003) Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J Power Sources 119–121:247–251

    Article  Google Scholar 

  5. MacNeil DD, Lu Z, Chen Z, Dahn JR (2002) A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources 108:8–14

    CAS  Article  Google Scholar 

  6. Patoux S, Rousse G, Leriche JB, Masquelier C (2003) Structural and electrochemical studies of rhombohedral Na2TiM(PO4)3 and Li1.6Na0.4TiM(PO4)3 (M = Fe, Cr) phosphates. Chem Mater 15:2084–2093

    CAS  Article  Google Scholar 

  7. Yin SC, Strobel PS, Grondey H, Nazar LF (2004) Li2.5V2(PO4)3: a room-temperature analogue to the fast-ion conducting high-temperature gamma-phase of Li3V2(PO4)3. Chem Mater 16:1456–1465

    CAS  Article  Google Scholar 

  8. Yang HQ, Li DP, Han S, Li N, Lin BX (1995) Vanadium-manganese complex oxides as cathode materials for aqueous solution secondary batteries. J Power Sources 58:221–224

    Article  Google Scholar 

  9. Lux SF, Schappacher F, Balducci A, Passerini S, Winter M (2010) Low cost, environmentally benign binders for lithium-ion batteries. J Electrochem Soc 157:A320–A325

    CAS  Article  Google Scholar 

  10. Lee JH, Kim HH, Zang DS, Choi YM, Kim H, Yi DK, Sigmund WM, Paik U (2010) Evaluation of surface acid and base properties of LiFePO4 in aqueous medium with pH and its electrochemical properties. J Phys Chem C 114:4466–4472

    CAS  Article  Google Scholar 

  11. Porcher W, Lestriez B, Jouanneau S, Guyomard D (2010) Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes. J Power Sources 195:2835–2843

    CAS  Article  Google Scholar 

  12. Li J, Armstrong BL, Daniel C, Kiggans J, Wood DL (2013) Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes. J Colloid Interf Sci 405:118–124

    CAS  Article  Google Scholar 

  13. Li CC, Wang YH, Yang TY (2011) Effects of surface-coated carbon on the chemical selectivity for water-soluble dispersants of LiFePO4. J Electrochem Soc 158:A828–A834

    CAS  Article  Google Scholar 

  14. Li CC, Peng XW, Lee JT, Wang FM (2010) Using poly (4-styrene sulfonic acid) to improve the dispersion homogeneity of aqueous-processed LiFePO4 cathodes. J Electrochem Soc 157:A517–A520

    CAS  Article  Google Scholar 

  15. Alias N, Mohamad AA (2015) Advances of aqueous rechargeable lithium-ion battery: a review. J Power Sources 274:237–251

    CAS  Article  Google Scholar 

  16. Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Size effects on carbon-free LiFePO4 powders the key to superior energy density. Electrochem Solid-State Lett 9:A352–A355

    CAS  Article  Google Scholar 

  17. Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2008) Aging of LiFePO4 upon exposure to H2O. J Power Sources 185:698–710

    CAS  Article  Google Scholar 

  18. Denis YW, Donoue K, Kadohata T, Murata T, Matsuta S, Fujitani S (2008) Impurities in LiFePO4 and their influence on material characteristics impurities in LiFePO4 and their influence on material characteristics. J Electrochem Soc 155:A526–A530

    Article  Google Scholar 

  19. Porcher W, Moreau P, Lestriez B, Jouanneau S, Le Cras F, Guyomard D (2008) Stability of LiFePO4 in water and consequence on the Li battery behavior. Ionics 14:583–587

    CAS  Article  Google Scholar 

  20. Tsai JC, Tsai FY, Tung CA, Hsieh HW, Li CC (2013) Gelation or dispersion of LiFePO4 in water-based slurry? J Power Sources 241:400–403

    CAS  Article  Google Scholar 

  21. Tsai FY, Jhang JH, Hsieh HW, Li CC (2016) Dispersion, agglomeration, and gelation of LiFePO4 in water-based slurry. J Power Sources 310:47–53

    CAS  Article  Google Scholar 

  22. Prosini PP, Lisi M, Scaccia S, Carewska M, Cardellini F, Pasquali M (2002) Synthesis and characterization of amorphous hydrated FePO4 and its electrode performance in lithium batteries. J Electrochem Soc 149:A297–A301

    CAS  Article  Google Scholar 

  23. Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97:498–502

    Article  Google Scholar 

  24. Casey WH, Ludwig C (1996) The mechanism of dissolution of oxide minerals. Nature 381:506

    CAS  Article  Google Scholar 

  25. Odzak N, Kistler D, Behra R, Sigg L (2014) Dissolution of metal and metal oxide nanoparticles in aqueous media. Environ Pollut 191:132–138

    CAS  Article  Google Scholar 

  26. Neubrand A, Lindner R, Hoffmann P (2000) Room-temperature solubility behavior of barium titanate in aqueous media. J Am Ceram Soc 83:860–864

    CAS  Article  Google Scholar 

  27. Robert CW, Melvin JA (2003) CRC handbook of chemistry and physics. CRC Press, Florida

    Google Scholar 

  28. Li CC, Jean JH (2002) Interaction between dissolved Ba2+ and PAA-NH4 dispersant in aqueous barium titanate suspensions. J Am Ceram Soc 85:1449–1455

    CAS  Article  Google Scholar 

  29. Jean JH, Wang HR (2000) Effects of solids loading, pH, and polyelectrolyte addition on the stabilization of concentrated aqueous BaTiO3 suspensions. J Am Ceram Soc 83:277–280

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate material supports from the Advanced Lithium Electrochemistry Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Chen Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, CC., Chang, SJ. & Chen, CA. Effects of sp2- and sp3-carbon coatings on dissolution and electrochemistry of water-based LiFePO4 cathodes. J Appl Electrochem 47, 1065–1072 (2017). https://doi.org/10.1007/s10800-017-1105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1105-y

Keywords

  • Lithium-ion battery
  • Lithium iron phosphate
  • Cathode
  • Dissolution
  • Aqueous slurry