Skip to main content
Log in

Stability of LiFePO4 in water and consequence on the Li battery behaviour

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The stability of LiFePO4 in water was investigated. Changes upon exposure to water can have several important implications for storage conditions of LiFePO4, aqueous processing of LiFePO4-based composite electrodes, and eventually for utilisation in aqueous lithium batteries. A Li3PO4 layer of a few nanometers thick was characterised at the LiFePO4 grains surface after immersion in water, accompanied by an increase of FeIII percentage in the grains. For first charge–discharge cycles in a lithium battery, no effect was observed on electrochemical performances for a sample of LiFePO4 immersed for 24 h at a concentration of 50 g L−1 without any pH modification. To limit the aging of LiFePO4 during aqueous electrode processing, it is advised to reduce the immersion duration, to concentrate the LiFePO4 suspensions, and not to modify the pH. In addition, since immersion in water mimics an accelerated exposure to air humidity, LiFePO4 should be stored in a dry atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  2. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224

    Article  CAS  Google Scholar 

  3. Iltchev N, Chen Y, Okada S, Yamaki J-I (2003) J Power Sources 119–121:749

    Article  Google Scholar 

  4. Arnold G, Garche J, Hemmer R, Ströbele S, Vogler C, Wohlfahrt-Mehrens M (2003) J Power Sources 119–121:247

    Article  Google Scholar 

  5. Striebel K, Shim J, Sierra A, Yang H, Song XY, Kostecki R, McCarthy M (2005) J Power Sources 146:33

    Article  CAS  Google Scholar 

  6. Andersson AS, Thomas JO (2001) J Power Sources 97–98:498

    Article  Google Scholar 

  7. Franger S, Benoit C, Bourbon C, Le Cras F (2006) J Phys Chem Solids 67:1338

    Article  CAS  Google Scholar 

  8. Chen Z, Dahn JR (2002) J Electrochem Soc 149:A1184

    Article  CAS  Google Scholar 

  9. Ravet N, Goodenough JB, Besner S, Gauthier M, Armand M (2001) J Power Sources 97–98:503

    Article  Google Scholar 

  10. Franger S, Bourbon C, Le Cras F (2002) Electrochem Solid-State Lett 5:A231

    Article  CAS  Google Scholar 

  11. Delacourt C, Wurm C, Laffont L, Leriche J-B, Masquelier C (2006) Solid State Ion 177:333

    Article  CAS  Google Scholar 

  12. Doeff MM, Hu Y, Mclarnon F, Kostecki R (2003) Electrochem Solid-State Lett 6:A207

    Article  CAS  Google Scholar 

  13. Julien CM (2007) Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15

  14. Franger S (2007) Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15

  15. http://www.phostechlithium.com

  16. http://www.a123systems.com

  17. Guerfi A, Kaneko M, Petitclerc M, Mori M, Zaghib K (2007) J Power Sources 163:1047

    Article  CAS  Google Scholar 

  18. Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S (2001) Electrochem Solid-State Lett 4:A187

    Article  CAS  Google Scholar 

  19. Li CC, Lee JT, Lo CY, Wu MS (2005) Electrochem Solid-State Lett 8:A509

    Article  CAS  Google Scholar 

  20. Li CC, Lee JT, Peng XW (2006) J Electrochem Soc 153:A809

    Article  CAS  Google Scholar 

  21. Porcher W, Moreau P, Lestriez B, Jouanneau S, Guyomard D (in press) Electrochem Solid-State Lett

  22. Andersson AS, Kalska B, Häggström L, Thomas JO (2000) Solid State Ion 130:41

    Article  CAS  Google Scholar 

  23. Ait Salah A, Mauger A, Julien CM, Gendron F (2006) Mater Sci Eng B 129:232

    Article  Google Scholar 

  24. Martin J-F (2007) Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15

  25. Ravet N, Gauthier M, Zaghib K, Goodneough JB, Mauger A, Gendron F, Julien CM (2007) Chem Mater 19:2595

    Article  CAS  Google Scholar 

  26. Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D (2007) J Power Sources 165:491

    Article  CAS  Google Scholar 

  27. Dokko K, Shiraishi K, Kanamura K (2005) J Electrochem Soc 152:A2199

    Article  Google Scholar 

  28. Koltypin M, Aurbach D, Nazar L, Ellis B (2007) Electrochem Solid-Stat Lett 10:A40

    Article  CAS  Google Scholar 

  29. Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF (1992) Solid State Ion 53-56:647

    Article  CAS  Google Scholar 

  30. Xu Y-N, Ching WY, Chiang Y-M (2004) J Applied Phys 95:6583

    Article  CAS  Google Scholar 

  31. Appapillai AT, Mansour AM, Cho J, Shao-Horn Y (2007) Chem Mater, DOI 10.1021/cm0715390

Download references

Acknowledgments

The authors gratefully acknowledge C. Bourbon, S. Yahiaoui, P. Deniard and M. Suchaud for LiFePO4 synthesis, chemical analyses, DRX discussions and Mössbauer experiments, respectively. The authors also thank ADEME (Agence De l’Environnement et de la Maîtrise de l’Energie) and CEA/INSTN (Commissariat à l’Energie Atomique/Institut National des Sciences & Techniques Nucléaires) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lestriez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porcher, W., Moreau, P., Lestriez, B. et al. Stability of LiFePO4 in water and consequence on the Li battery behaviour. Ionics 14, 583–587 (2008). https://doi.org/10.1007/s11581-008-0215-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0215-2

Keywords

Navigation