Skip to main content
Log in

Carbon corrosion characteristics of CN x nanostructures in acidic media and implications for ORR performance

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Accelerated electrochemical corrosion of nitrogen-containing carbon (CN x ) oxygen reduction catalysts was performed by a chronoamperometric hold at 1.2 V versus NHE in acidic electrolyte using a rotating disk electrode system. Cyclic voltammograms were used to measure the electrochemically active quinone/hydroquinone redox reaction couple indicating the degree of carbon corrosion. Half-cell testing of CN x oxygen reduction catalyst materials showed superior carbon corrosion resistance compared to Vulcan carbon, the most ubiquitous cathode catalyst support. When oxygen reduction activity was measured before and after carbon corrosion, carbon corrosion resilience trended with the oxygen reduction activity. CN x catalysts subjected to carbon corrosion testing did not show a change in the onset of oxygen reduction reaction (ORR) activity potentials with only a slight reduction in current density, but showed improved ORR selectivity to the complete reduction of dioxygen to water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matter PH, Zhang L, Ozkan US (2006) J Catal 239:83

    Article  CAS  Google Scholar 

  2. Lefevre M, Proietti E, Jaouen F, Dodelet J-P (2009) Science 324:71

    Article  CAS  Google Scholar 

  3. Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2007) J Mol Catal 264:73

    Article  CAS  Google Scholar 

  4. Matter PH, Biddinger EJ, Ozkan US (2007) Non-precious metal oxygen reduction catalysts for PEM fuel cells. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  5. Matter PH, Wang E, Ozkan US (2006) J Catal 243:395

    Article  CAS  Google Scholar 

  6. Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2006) J Phys Chem B 110:18374

    Article  CAS  Google Scholar 

  7. Matter PH, Ozkan US (2006) Catal Lett 109:115

    Article  CAS  Google Scholar 

  8. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) Electrochim Acta 53:4937

    Article  CAS  Google Scholar 

  9. Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) J Power Sources 183:34

    Article  CAS  Google Scholar 

  10. Subramanian NP, Li X, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G, Lee J-W, Popov BN (2009) J Power Sources 188:38

    Article  CAS  Google Scholar 

  11. Wu G, Chen Z, Artyushkova K, Garzon FH, Zelenay P (2008) ECS Trans 16:159

    Article  CAS  Google Scholar 

  12. Schilling T, Bron M (2008) Electrochim Acta 53:5379

    Article  CAS  Google Scholar 

  13. Chung HT, Johnston CM, Garzon FH, Zelenay P (2008) ECS Trans 16:385

    Article  CAS  Google Scholar 

  14. Gasteiger HA, Markovic NM (2009) Science 324:48

    Article  CAS  Google Scholar 

  15. Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal B Environ 79:89

    Article  CAS  Google Scholar 

  16. Bashyam R, Zelenay P (2006) Nature 443:63

    Article  CAS  Google Scholar 

  17. Biddinger EJ, von Deak D, Ozkan US (2009) Top Catal 52:1566

    Article  CAS  Google Scholar 

  18. Maldonado S, Stevenson KJ (2005) J Phys Chem B 109:4707

    Article  CAS  Google Scholar 

  19. Jaouen F, Herranz J, Lefevre M, Dodelet J-P, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson TS, Pylypenko S, Atanassov P, Ustinov EA (2009) ACS Appl Mat Interfaces 1:1623

    Article  CAS  Google Scholar 

  20. Young AP, Stumper J, Gyenge E (2009) J Electrochem Soc 156:B913

    Article  CAS  Google Scholar 

  21. Kim J, Lee J, Tak Y (2009) J Power Sources 192:674

    Article  CAS  Google Scholar 

  22. Roen LM, Paik CH, Jarvi TD (2004) Electrochem Solid State Lett 7:A19

    Article  CAS  Google Scholar 

  23. Chaparro AM, Mueller N, Atienza C, Daza L (2006) J Electroanal Chem 591:67

    Article  Google Scholar 

  24. Mayrhofer KJJ, Meier JC, Ashton SJ, Wiberg GKH, Kraus F, Hanzlik M, Arenz M (2008) Electrochem Commun 10:1144

    Article  CAS  Google Scholar 

  25. Weng F-B, Hsu C-Y, Li C-W (2010) Int J Hydrogen Energy 35:3664

    Article  CAS  Google Scholar 

  26. Oh H-S, Kim K, Ko Y-J, Kim H (2010) Int J Hydrogen Energy 35:701

    Article  CAS  Google Scholar 

  27. Liu ZY, Zhang JL, Yu PT, Zhang JX, Makharia R, More KL, Stach EA (2010) J Electrochem Soc 157:B906

    Article  CAS  Google Scholar 

  28. Li X, Park S, Popov BN (2010) J Power Sources 195:445

    Article  CAS  Google Scholar 

  29. Li L, Xing Y (2006) J Electrochem Soc 153:A1823

    Article  CAS  Google Scholar 

  30. Kangasniemi KH, Condit DA, Jarvi TD (2004) J Electrochem Soc 151:E125

    Article  CAS  Google Scholar 

  31. Shao Y, Yin G, Zhang J, Gao Y (2006) Electrochim Acta 51:5853

    Article  CAS  Google Scholar 

  32. Wang X, Li W, Chen Z, Waje M, Yan Y (2006) J Power Sources 158:154

    Article  CAS  Google Scholar 

  33. Wang J, Yin G, Shao Y, Zhang S, Wang Z, Gao Y (2007) J Power Sources 171:331

    Article  CAS  Google Scholar 

  34. Li L, Xing Y (2008) J Power Sources 178:75

    Article  CAS  Google Scholar 

  35. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  36. Boehm HP (1994) Carbon 32:759

    Article  CAS  Google Scholar 

  37. Toebes ML, van Heeswijk JMP, Bitter JH, van Dillen AJ, de Jong KP (2004) Carbon 42:307

    Article  CAS  Google Scholar 

  38. Cote R, Lalande G, Guay D, Dodelet JP, Denes G (1998) J Electrochem Soc 145:2411

    Article  CAS  Google Scholar 

  39. Jaouen F, Marcotte S, Dodelet J-P, Lindbergh G (2003) J Phys Chem B 107:1376

    Article  CAS  Google Scholar 

  40. Wang P, Ma Z, Zhao Z, Jia L (2007) J Electroanal Chem 611:87

    Article  CAS  Google Scholar 

  41. Biddinger EJ, Knapke DS, von Deak D, Ozkan US (2010) Appl Catal B Environ 96:72

    Article  CAS  Google Scholar 

  42. Kinoshita K, Bett JAS (1974) Carbon 12:525

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support for this study from the US Department of Energy—Basic Energy Sciences through the grant # DE-FG02-07ER15896.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit S. Ozkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Deak, D., Biddinger, E.J. & Ozkan, U.S. Carbon corrosion characteristics of CN x nanostructures in acidic media and implications for ORR performance. J Appl Electrochem 41, 757–763 (2011). https://doi.org/10.1007/s10800-011-0292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0292-1

Keywords

Navigation