Skip to main content
Log in

Quantum Information Splitting Scheme and Experimental Verification Based on Three-qubit State and Bell State

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Currently, quantum communication is gradually moving from theory to reality. Considering the practical application of quantum communication, more effective and feasible quantum communication schemes are needed. The feasibility of quantum communication schemes can be effectively verified through the three-dimensional reconstruction technology in quantum computers, namely, quantum state tomography. Therefore, this paper creatively proposes a scheme for separating arbitrary two-qubit quantum information using three-qubit entangled states and Bell states as quantum channels and uses IBM Experience platform and quantum state tomography technology for experimental verification. A corresponding quantum circuit is designed on the IBM Quantum Experience cloud platform for experimental simulation. Without loss of generality, we use the RawFeatureVector circuit and a random function of Qiskit to generate the two-qubit state in our scheme. And on this basis, entirely and comprehensively extracted massive data of quantum state information to calculate fidelity, proving that the scheme is safe and effective. Finally, to ensure the communication security, we have analyzed the security of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Hillery, M., Buzek, V.: Secret sharing via quantum entanglement. Acta Phys. Slovaca. 49, 533–540 (1999)

    Google Scholar 

  2. Grudka, A., Wójcik, A.: Multiparty d-dimensional quantum information splitting. arXiv:quant-ph/0205111 (2002).

  3. Zheng, S.-B.: Splitting quantum information via w states. Phys. Rev. A 74(5), 054303 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Xi-Mei, Y., Yong-Jian, G., Li-Zhen, M., Bang-An, Z.: Scheme for splitting quantum information via w states in cavity qed systems. Chin. Phys. B 17(2), 462 (2008)

    Article  ADS  Google Scholar 

  5. Zhang, Q.-Y., Zhan, Y.-B., Zhang, L.-L., Ma, P.-C.: Schemes for splitting quantum information via tripartite entangled states. Int. J. Theor. Phys. 48(12), 3331–3338 (2009)

    Article  MathSciNet  Google Scholar 

  6. Yang, Y.-G., Wen, Q.-Y.: Threshold multiparty quantum-information splitting via quantum channel encryption. Int. J. Quantum Inf. 7(06), 1249–1254 (2009)

    Article  Google Scholar 

  7. Wang, X.-W., Xia, L.-X., Wang, Z.-Y., Zhang, D.-Y.: Hierarchical quantuminformation splitting. Opt. Commun. 283(6), 1196–1199 (2010)

    Article  ADS  Google Scholar 

  8. Guixia, P.: Quantum information splitting of arbitrary two-particle state using two ghz states. Chinese J. Quantum Electron. 27(5), 573 (2010)

    Google Scholar 

  9. Li, Y.-H., Liu, J.-C., Nie, Y.-Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)

    Article  MathSciNet  Google Scholar 

  10. Liu, Y.-M., Li, M.-L., Gao, H.-M., Liu, X.-S., Zhang, Z.-J.: A note on splitting four ensembles of two-qubit quantum information via three einstein-podolsky-rosen pairs. Int. J. Quantum Inf. 8(03), 529–533 (2010)

    Article  Google Scholar 

  11. Li, Y.-H., Nie, Y.-Y.: Quantum information splitting of an arbitrary three-atom state by using w-class states in cavity qed. Commun. Theor. Phys. 57(6), 995 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Nie, Y.-y., Li, Y.-h., Wang, Z.-s.: Semi-quantum information splitting using ghztype states. Quantum Inf. Process. 12(1), 437–448 (2013)

  13. Xu, G., Zhou, T., Chen, X.-B., Wang, X.: Splitting an arbitrary three-qubit state via a five-qubit cluster state and a bell state. Entropy 24(3), 381 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  14. Tang, J., Ma, S., Li, Q.: Universal hierarchical quantum information splitting schemes of an arbitrary multi-qubit state. Int. J. Theor. Phys. 61(8), 209 (2022)

    Article  MathSciNet  Google Scholar 

  15. Ma, S., Jiang, J., Yan, X.: Hierarchical quantum information splitting of an arbitrary m-qudit state with multiparty. Quantum Inf. Process. 22(6), 263 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  16. Liu, Z.-M., Zhou, L.: Quantum teleportation of a three-qubit state using a fivequbit cluster state. Int. J. Theor. Phys. 53, 4079–4082 (2014)

    Article  Google Scholar 

  17. Guo, W.-M., Qin, L.-R.: Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states. Chin. Phys. B 27(11), 110302 (2018)

    Article  ADS  Google Scholar 

  18. Zha, X.-W., Miao, N., Wang, H.-F.: Hierarchical quantum information splitting of an arbitrary two-qubit using a single quantum resource. Int. J. Theor. Phys. 58(8), 2428–2434 (2019)

    Article  MathSciNet  Google Scholar 

  19. Cao, Z., Zhang, C., He, C., Zhang, M.: Quantum teleportation protocol of arbitrary quantum states by using quantum fourier transform. Int. J. Theor. Phys. 59, 3174–3183 (2020)

    Article  MathSciNet  Google Scholar 

  20. Shao, Q.: Quantum teleportation of the two-qubit entangled state by use of fourqubit entangled state. Int. J. Theor. Phys. 52, 2573–2577 (2013)

    Article  Google Scholar 

  21. Li, Y.-h., Nie, L.-p., Li, X.-l., Sang, M.-h.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55(6), 3008–3016 (2016)

  22. Hu, A.-r.: Splitting an arbitrary three-qubit state by using an eight-qubit entangled state. Int. J. Theor. Phys. 55(1), 396–400 (2016)

  23. Chen, Y.: Splitting an arbitrary two-ubit state via a seven-qubit maximally entangled state. Int. J. Theor. Phys. 54(5), 1515–1518 (2015)

    Article  Google Scholar 

  24. Tang, M.-l., Zhu, H.-p.: Quantum information splitting of an arbitrary two-atom state by using w-class states in cavity qed. Int. J. Theor. Phys. 52(8), 2686–2691 (2013)

  25. Li, Y.-H., Liu, J.-C., Nie, Y.-Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)

    Article  MathSciNet  Google Scholar 

  26. Ma, S., Gong, L.: Deterministic bidirectional controlled remote preparation without information splitting. Quantum Inf. Process. 19(8), 1–20 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zhuravlev, V., Filippov, S.: Quantum state tomography via sequential uses of the same informationally incomplete measuring apparatus. Lobachevskii J. Math. 41(12), 2405–2414 (2020)

    Article  MathSciNet  Google Scholar 

  28. Yang, Z., Ru, S., Cao, L., Zheludev, N., Gao, W.: Experimental demonstration of quantum overlapping tomography. Phys. Rev. Lett. 130(5), 050804 (2023)

    Article  ADS  Google Scholar 

  29. Kunjummen, J., Tran, M.C., Carney, D., Taylor, J.M.: Shadow process tomography of quantum channels. Phys. Rev. A 107(4), 042403 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  30. Rajiuddin, S., Baishya, A., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state. Quantum Inf. Process. 19(3), 1–13 (2020)

    Article  Google Scholar 

  31. Kumar, A., Haddadi, S., Pourkarimi, M.R., Behera, B.K., Panigrahi, P.K.: Experimental realization of controlled quantum teleportation of arbitrary qubit states via cluster states. Scientific Reports 10(1), 1–16 (2020)

    Google Scholar 

  32. Sisodia, M., Shukla, A., Pathak, A.: Experimental realization of nondestructive discrimination of bell states using a five-qubit quantum computer. Physics Letters A 381(46), 3860–3874 (2017)

    Article  ADS  Google Scholar 

  33. Vishnu, P., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17(10), 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  34. Ren, Z.-A., Chen, Y.-P., Liu, J.-Y., Ding, H.-J., Wang, Q.: Implementation of machine learning in quantum key distributions. IEEE Commun. Lett. 25(3), 940–944 (2020)

    Article  Google Scholar 

  35. Bebrov, G., Dimova, R.: Efficient quantum secure direct communication protocol based on quantum channel compression. Int. J. Theor. Phys. 59(2), 426–435 (2020)

    Article  MathSciNet  Google Scholar 

  36. Choudhury, B.S., Samanta, S.: A controlled asymmetric quantum conference. Int. J. Theor. Phys. 61(2), 1–9 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Fundation of China (62172060),Sichuan Science and Technology Program (2022YFG0316,2023ZHCG0004) and National Key R &D Plan (2022YFB3304303)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Dongfen Li.

Ethics declarations

Competing of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Li, D., Zhou, J. et al. Quantum Information Splitting Scheme and Experimental Verification Based on Three-qubit State and Bell State. Int J Theor Phys 62, 259 (2023). https://doi.org/10.1007/s10773-023-05508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05508-4

Keywords

Navigation