Skip to main content
Log in

Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum teleportation is extensively used in quantum communication where a sender sends a information to a receiver at a large distance through a quantum entangled channel. Li and Cao (Commun Theor Phys 47(3):464, 2007) proposed a theoretical scheme for teleportation of a two-particle entangled state via cluster state. Here, we present the above scheme of teleportation for an arbitrary state by using a four-qubit cluster state. We demonstrate the scheme on the IBM quantum computer by designing appropriate quantum circuits using single-qubit and two-qubit quantum gates. We collect the experimental results with good fidelity revealing the teleportation of an arbitrary two-qubit state using a four-qubit cluster state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: International Conference on Computers, Systems & Signal Processing, Bangalore, India, Dec 9-12, pp. 175–179 (1984)

  7. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  9. Cao, Z.L., Song, W.: Teleportation of a two-particle entangled state via W class states. Physica A 347, 177 (2005)

    Article  ADS  Google Scholar 

  10. Joo, J., Park, Y.-J., Oh, S., Kim, J.: Teleportation via W state. New J. Phys. 5, 136 (2003)

    Article  ADS  Google Scholar 

  11. Ghosh, S., Kar, G., Roy, A., Sarkar, D., Sen, U.: Entanglement teleportation through GHZ-class states. New J. Phys. 4, 48 (2002)

    Article  ADS  Google Scholar 

  12. Tsai, C.-W., Hwang, T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49, 1969 (2010)

    Article  MathSciNet  Google Scholar 

  13. Li, D.-C., Cao, Z.-L.: Teleportation of two particle state via cluster state. Commun. Theor. Phys. 47(3), 464 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Liu, Z.-M., Zhou, L.: Quantum teleportation of a three-qubit state using a five-qubit cluster state. Int. J. Theor. Phys. 53, 4079 (2014)

    Article  Google Scholar 

  15. Sang, M.-H.: Bidirectional quantum teleportation by using five-qubit cluster state. Int. J. Theor. Phys. 55, 1333 (2016)

    Article  MathSciNet  Google Scholar 

  16. Zhou, X.Q., Ghne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W.: Experimental entanglement of six photons in graph states. Nature 3, 91 (2007)

    Google Scholar 

  17. IBM Quantum Experience. (2016). https://www.research.ibm.com/ibm-q/. Accessed 5 May 2019

  18. Halder, K., Hegade, N.N., Behera, B.K., Panigrahi, P.K.: Digital Quantum Simulation of Laser-Pulse Induced Tunneling Mechanism in Chemical Isomerization Reaction. (2018). arXiv:1808.00021

  19. Malik, R., Singh, R.P., Behera, B.K., Panigrahi, P.K.: First Experimental Demonstration of Multi-Particle Quantum Tunneling in IBM Quantum Computer. (2019). https://doi.org/10.13140/RG.2.2.27260.18569

  20. Aggarwal, D., Raj, S., Behera, B.K., Panigrahi, P.K.: Application of Quantum Scrambling in Rydberg Atom on IBM Quantum Computer. (2018). arXiv:1806.00781

  21. Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. Europhys. Lett. 119, 60002 (2017)

    Article  ADS  Google Scholar 

  23. Tannu, S.S., Qureshi, M.K.: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. (2018). arXiv:1805.10224

  24. Wootton, J.R.: Benchmarking of Quantum Processors with Random Circuits. (2018). arXiv:1806.02736

  25. Manabputra, B., Behera, K., Panigrahi, P.K.: A Simulational Model for Witnessing Quantum Effects of Gravity UsinIBM Quantum Computer. (2018). arXiv:1806.10229

  26. Viyuela, O., et al.: Observation of topological Uhlmann phases with superconducting qubits. npj Quantum Inf. 4, 10 (2018)

    Article  ADS  Google Scholar 

  27. García-Martín, D., Sierra, G.: Five experimental tests on the 5-qubit IBM quantum computer. J. Appl. Math. Phys. 6, 1460 (2018)

    Article  Google Scholar 

  28. Jha, R., Das, D., Dash, A., Jayaraman, S., Behera, B.K., Panigrahi, P.K.: A Novel Quantum N-Queens Solver Algorithm and Its Simulation and Application to Satellite Communication Using IBM Quantum Experience. (2018). arXiv:1806.10221

  29. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gangopadhyay, S., Manabputra, B., Behera, K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2017)

    Article  Google Scholar 

  32. Yalçinkaya, İ., Gedik, Z.: Optimization and experimental realization of the quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)

    Article  ADS  Google Scholar 

  33. Srinivasan, K., Satyajit, S., Behera, B.K., Panigrahi, P.K.: Efficient Quantum Algorithm for Solving Traveling Salesman Problem: An IBM Quantum Experience. (2018). arXiv:1805.10928

  34. Dash, A., Sarmah, D., Behera, B.K., Panigrahi, P.K.: Exact Search Algorithm to Factorize Large Biprimes and a Triprime on IBM Quantum Computer. arXiv:1805.10478

  35. Baishya, A., Sonkar, S., Behera, B.K., Panigrahi, P.K.: Demonstration of Quantum Information Splitting Using a Five-Qubit Cluster State: An IBM Quantum Experience. (2019). https://doi.org/10.13140/RG.2.2.21435.05925

  36. Baishya, A., Kumar, L., Behera, B.K., Panigrahi, P.K.: Experimental Demonstration of Force Driven Quantum Harmonic Oscillator in IBM Quantum Computer. (2019). arXiv:1906.01436

  37. Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)

    Article  ADS  Google Scholar 

  38. Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)

    Article  ADS  Google Scholar 

  39. Kalra, A.R., Gupta, N., Behera, B.K., Prakash, S., Panigrahi, P.K.: Demonstration of the no-hiding theorem on the 5-Qubit IBM quantum computer in a category-theoretic framework. Quantum Inf. Process. 18, 170 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  40. Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  41. Plesa, M.-I., Mihai, T.: A new quantum encryption scheme. Adv. J. Grad. Res. 4, 1 (2018)

    Article  Google Scholar 

  42. Majumder, A., Mohapatra, S., Kumar, A.: Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud. (2017). arXiv:1707.07460

  43. Sarkar, K., Behera, B.K., Panigrahi, P.K.: A Robust Tripartite Quantum Key Distribution Using Mutually Shared Bell States and Classical Hash Values Using a Complete-Graph Network Architecture. (2019). https://doi.org/10.13140/RG.2.2.27559.39844

  44. Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  45. Roffe, J., Headley, D., Chancellor, N., Horsman, D., Kendon, V.: Protecting quantum memories using coherent parity check codes. Quantum Sci. Technol. 3, 035010 (2018)

    Article  ADS  Google Scholar 

  46. Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17, 212 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  47. Harper, R., Flammia, S.: Fault-Tolerant Logical Gates in the IBM Quantum Experience. (2018). arXiv:1806.02359

  48. Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: Quantum Locker Using a Novel Verification Algorithm and Its Experimental Realization in IBM Quantum Computer. (2017). arXiv:1710.05196

  49. Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum artificial life in an IBM quantum computer. Sci. Rep. 8, 14793 (2018)

    Article  ADS  Google Scholar 

  50. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)

    Article  ADS  Google Scholar 

  51. Behera, B.K., Reza, T., Gupta, A., Panigrahi, P.K.: Quantum robots can fly; play games: an IBM quantum experience. Quantum Inf. Process. 18, 219 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.B. acknowledges Indian Institute of Science Education and Research, Kolkata, for accommodating hospitality. R.S. and B.K.B. acknowledge the support of Institute fellowship provided by IISER Kolkata. We are notably grateful to IBM quantum experience project. The discussions and opinions developed in this paper are only those of the authors and do not reflect the opinions of IBM or any of its employees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash K. Behera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajiuddin, S., Baishya, A., Behera, B.K. et al. Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state. Quantum Inf Process 19, 87 (2020). https://doi.org/10.1007/s11128-020-2586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2586-x

Keywords

Navigation