Skip to main content
Log in

Quantum state tomography using quantum machine learning

  • Research Article
  • Published:
Quantum Machine Intelligence Aims and scope Submit manuscript

Abstract

Quantum state tomography (QST) is a fundamental technique in quantum information processing (QIP) for reconstructing unknown quantum states. However, the conventional QST methods are limited by the number of measurements required, which makes them impractical for large-scale quantum systems. To overcome this challenge, we propose the integration of quantum machine learning (QML) techniques to enhance the efficiency of QST. In this paper, we conduct a comprehensive investigation into various approaches for QST, encompassing both classical and quantum methodologies. We also implement different QML approaches for QST and demonstrate their effectiveness on various simulated and experimental quantum systems, including multi-qubit networks. Our results show that our QML-based QST approach can achieve high fidelity (\(98 \%\)) with significantly fewer measurements than conventional methods, making it a promising tool for practical QIP applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Algorithm 2
Fig. 4
Algorithm 3
Fig. 5
Fig. 6
Fig. 7
Algorithm 4
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

The datasets and numerical details necessary to replicate this work are available from the corresponding author upon reasonable request.

References

  • Acharya A, Kypraios T, Guţă M (2019) A comparative study of estimation methods in quantum tomography. J Phys A Math Theor 52(23):234001

    Article  MathSciNet  Google Scholar 

  • Ahmed S, Muñoz CS, Nori F, Kockum AF (2021) Quantum state tomography with conditional generative adversarial networks. Phys Rev Lett 127(14):140502

    Article  Google Scholar 

  • Altepeter JB, Jeffrey ER, Kwiat PG (2005) Photonic state tomography. Adv At Mol Opt Phys 52:105–159

    Article  Google Scholar 

  • Cha P, Ginsparg P, Wu F, Carrasquilla J, McMahon PL, Kim E-A (2021) Attention-based quantum tomography. Mach Learn Sci Technol 3(1):01LT01

    Article  Google Scholar 

  • Choi M-D (1975) Completely positive linear maps on complex matrices. Linear Algebra Appl 10(3):285–290

    Article  MathSciNet  Google Scholar 

  • Gao J, Qiao LF, Jiao ZQ, Ma YC, Hu CQ, Ren RJ, Jin XM (2018) Experimental machine learning of quantum states. Phys Rev Lett 120(24):240501

    Article  Google Scholar 

  • Gonçalves DS, Gomes-Ruggiero MA, Lavor C, Farías OJ, Ribeiro PH (2011) Local solutions of maximum likelihood estimation in quantum state tomography. arXiv: https://arxiv.org/abs/1103.3682

  • Gonçalves DS, Azevedo CLN, Lavor C, Gomes-Ruggiero MA (2018) Bayesian inference for quantum state tomography. J Appl Stat 45(10):1846–1871

    Article  MathSciNet  Google Scholar 

  • Greenberger DM, Horne MA, Zeilinger A (2007) Going beyond Bell’s theorem. arXiv: https://arxiv.org/abs/0712.0921

  • Hai VT, Ho LB (2023) Universal compilation for quantum state tomography. 13(3750):1–12

  • He C, Li J, Liu W, Peng J, Wang ZJ (2022) A low-complexity quantum principal component analysis algorithm. IEEE Trans Quantum Eng 3:1–13. https://doi.org/10.1109/TQE.2021.3140152

    Article  Google Scholar 

  • Hsieh HY, Ning J, Chen YR, Wu HC, Chen HL, Wu CM, Lee RK (2022) Direct parameter estimations from machine learning-enhanced quantum state tomography. Symmetry 14(5):874

    Article  Google Scholar 

  • IBM Quantum (2024). https://quantum-computing.ibm.com/

  • James DFV, Kwiat PG, Munro WJ, White AG (2001) Measurement of qubits. Phys Rev A 64(5):052312

    Article  MathSciNet  Google Scholar 

  • Jianqing F, Liao Y, Liu H (2015) An overview on the estimation of large covariance and precision matrices, arXiv:https://arxiv.org/abs/1504.02995

  • Kopczyk D (2018) Quantum machine learning for data scientists. arXiv: https://arxiv.org/abs/1804.10068

  • Koutný D, Motka L, Hradil Z, Řeháček J, Sánchez-Soto LL (2022) Neural-network quantum state tomography. Phys Rev A 106(1):012409

    Article  MathSciNet  Google Scholar 

  • Kurmapu MK (2020) Machine learning assisted quantum state tomography. M.S. thesis, University of Calgary, Alberta, Canada. https://prism.ucalgary.ca/items/ce19b9c3-34cb-4166-b5ba-f4582502eb38

  • Li Z, Chai Z, Guo Y, Ji W, Wang M, Shi F, Wang Y, Lloyd S, Du J (2021) Resonant quantum principal component analysis. Sci Adv 7(34). https://doi.org/10.1126/sciadv.abg2589

  • Lin L (2022) Lecture notes on quantum algorithms for scientific computation. arXiv: https://arxiv.org/abs/2201.08309

  • Lin J, Bao W-S, Zhang S, Li T, Wang X (2019) An improved quantum principal component analysis algorithm based on the quantum singular threshold method. Phys Letts A 383(24):2862–2868. https://doi.org/10.1016/j.physleta.2019.06.026

    Article  MathSciNet  Google Scholar 

  • Liu Y, Wang D, Xue S, Huang A, Fu X, Qiang X, Xu P, Huang H, Deng M, Guo C, Yang X, Wu J (2020) Variational quantum circuits for quantum state tomography. Phys Rev A 101(5):052316

    Article  Google Scholar 

  • Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nat Phys 10(9):631–633. https://doi.org/10.1038/nphys3029

    Article  Google Scholar 

  • Lohani S, Kirby BT, Brodsky M, Danaci O, Glasser RT (2020) Machine learning assisted quantum state estimation. Mach Learn Sci Technol 1(3):035007

    Article  Google Scholar 

  • Lum DJ, Weinstein YS (2022) Bayesian quantum state tomography with python’s PyMC. arXiv: https://arxiv.org/abs/2212.10655

  • Ma H, Dong D, Petersen IR (2021) On how neural networks enhance quantum state tomography with limited resources. In: 2021 60th IEEE conference on decision and control (CDC), IEEE pp 4146–4151

  • Mondal S, Dutta AK (2023) A modified least squares-based tomography with density matrix perturbation and linear entropy consideration along with performance analysis. New J Phys 25(8):083051

    Article  MathSciNet  Google Scholar 

  • Nielsen MA, Chuang IL (2011) Quantum computation and quantum information. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • O’Donnell R, Wright J (2016) Efficient quantum tomography. Proceedings of the Forty-Eighth Annual ACM symposium on theory of computing, pp 899–912. https://doi.org/10.1145/2897518.2897544

  • Opatrny T, Welsch DG, Vogel W (1997) Least-square inversion for density-matrix reconstruction. Phys Rev A 56(3):1788–1799

    Article  Google Scholar 

  • Paris M, Řeháček J (2004) Quantum state estimation. Springer, New York, USA

    Book  Google Scholar 

  • Preskill J (2018) Quantum computing in the NISQ era and beyond. Quantum 2:79–99

  • Qi B, Hou Z, Wang Y, Dong D, Zhong HS, Li L, Guo GC (2017) Adaptive quantum state tomography via linear regression estimation: theory and two-qubit experiment. npj Quantum Inf 3(1):19

    Article  Google Scholar 

  • Qiskit Contributors (2023) Qiskit: an open-source framework for quantum computing. https://doi.org/10.5281/zenodo.2573505

  • Quek Y, Fort S, Ng HK (2021) Adaptive quantum state tomography with neural networks. Nature npj Quantum Inf 7(105):1–6

    Google Scholar 

  • Ramadhani S, Rehman JU, Shin H (2021) Quantum error mitigation for quantum state tomography. IEEE Access 9:107955–10796

    Article  Google Scholar 

  • Řeháček K, Hradil Z, Ježek M (2001) Iterative algorithm for reconstruction of quantum states. Phys Rev A 63(4):040303

    Article  MathSciNet  Google Scholar 

  • Rippe L, Julsgaard B, Walther A, Ying Y, Kröll S (2008) Experimental quantum-state tomography of a solid-state qubit. Phys Rev A 77(2):022307

    Article  Google Scholar 

  • Schmale T, Reh M, Gärttner M (2022) Efficient quantum state tomography with convolutional neural networks. Nature npj Quantum Inf 8(115):1–8

    Google Scholar 

  • Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019) Evaluating analytic gradients on quantum hardware. arXiv: https://arxiv.org/abs/1811.11184

  • Sen P, Bhatia AS, Bhangu KS, Elbeltagi A (2022) Variational quantum classifiers through the lens of the hessian. Plos One 17(1):e0262346

    Article  Google Scholar 

  • Surawy-Stepney T, Kahn J, Kueng R, Guţă M (2022) Projected least-squares quantum process tomography. Quantum 6:844

    Article  Google Scholar 

  • Tang E (2021) Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions. Phys Rev Lett 127(6):060503. https://doi.org/10.1103/PhysRevLett.127.060503

    Article  MathSciNet  Google Scholar 

  • Teo YS (2015) Introduction to quantum-state estimation. World Scientific, Singapore

    Book  Google Scholar 

  • Thew RT, Nemoto K, White AG, Munro WJ (2002) Qudit quantum-state tomography. Phys Rev A 66(1):012303

    Article  MathSciNet  Google Scholar 

  • Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko RG (2018) Many-body quantum state tomography with neural networks. arXiv: https://arxiv.org/abs/1703.05334

  • Uhlmann A (1976) The “transition probability ’ ’ in the state space of a \(*\)-Algebra. Rep Math Phys 9(2):273–279

    Article  MathSciNet  Google Scholar 

  • Vogel K, Risken H (1989) Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys Rev A 40(5):2847–2849

    Article  Google Scholar 

  • Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm for data fitting. Phys Rev Lett 109(5):050505

    Article  Google Scholar 

  • Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature 299(5886):802–803

    Article  Google Scholar 

  • Xin T, Lu S, Cao N, Anikeeva G, Lu D, Li J, Zeng B (2019) Local-measurement-based quantum state tomography via neural networks. npj Quantum Inf 5(1):109

    Article  Google Scholar 

  • Xu Q, Xu S (2018) Neural network state estimation for full quantum state tomography. arXiv preprint arXiv:1811.06654

  • Zuo Y, Cao C, Cao N, Lai X, Zeng B, Du S (2022) Optical neural network quantum state tomography. Adv Photonics 4(2):026004–026004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution.

Corresponding author

Correspondence to Nouhaila Innan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innan, N., Siddiqui, O.I., Arora, S. et al. Quantum state tomography using quantum machine learning. Quantum Mach. Intell. 6, 28 (2024). https://doi.org/10.1007/s42484-024-00162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42484-024-00162-3

Keywords

Navigation