Skip to main content
Log in

Improvement and Flexible Multiparty Extension of Semi-Quantum Key Agreement Protocol

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Zhou et al. (Int. J. Theor. Phys. 59, 663-676 2020) introduced a three-party semi-quantum key agreement protocol utilizing four-qubit cluster states. However, we found it has security vulnerabilities, quantum resource wastage, and limitations on the number of participants. To address these concerns, we propose an improved protocol using GHZ-like states, which can resist double C-Not attack and conserve quantum resources. Additionally, we extend the improved scheme to multiparty key agreement in circle-type, which offers high efficiency and is well-suited for flexible dynamic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability statement

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Bennett, C.H., Brassard, G.: An update on quantum cryptography. Paper presented at the advances in cryptology: Proceedings of CRYPTO 84 4, Springer Berlin Heidelberg, (1985)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Chen, L.-Q., et al.: A quantum key distribution routing scheme for hybrid-trusted QKD network system. Quant. Inform. Process. 22(1), 75 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ye, C.-Q., et al.: Circular mediated semi-quantum key distribution. Quant. Inform. Process. 22(4), 170 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Yang, Y., Wen, Q.: Threshold quantum secret sharing between multi-party and multi-party. Sci. China Ser. G: Phys. Mechan. Astron. 51(9), 1308–1315 (2008)

    Article  ADS  MATH  Google Scholar 

  8. Wang, Y., et al.: Verifiable multi-dimensional (t, n) threshold quantum secret sharing based on quantum walk. Int. J. Theoret. Phys. 61(2), 24 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Long, G.-L., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007)

    Article  ADS  Google Scholar 

  10. Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  11. Cao, Z., et al.: Realization of quantum secure direct communication with continuous variable. Research 6, 0193 (2023)

    Article  Google Scholar 

  12. Dušek, M., et al.: Quantum identification system. Phys. Rev. A 60(1), 149 (1999)

    Article  ADS  MATH  Google Scholar 

  13. Hong, C., et al.: Quantum identity authentication with single photon. Quant. Inform. Process. 16, 1–20 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Rao, B.D., Jayaraman, R.: A novel quantum identity authentication protocol without entanglement and preserving pre-shared key information. Quant. Inform. Process. 22(2), 92 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Mitchell, C.J., Ward, M., Wilson, P.: Key control in key agreement protocols. Electron. Lett. 34(10), 980–980 (1998)

    Article  ADS  Google Scholar 

  16. Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services and key agreement protocols. IEEE J. Sel. Areas Commun. 18(4), 628–639 (2000)

    Article  Google Scholar 

  17. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1 (2004)

    Article  Google Scholar 

  18. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. Paper presented at the proceedings of the 14th information security conference (ISC 2004), National Taiwan University of Science and Technology, Taipei, (2004)

  19. Chong, S.-K., Tsai, C.-W., Hwang, T.: Improvement on ‘quantum key agreement protocol with maximally entangled states’. Int. J. Theoret. Phys. 50, 1793–1802 (2011)

    Article  MATH  Google Scholar 

  20. Zhu, Z.-C., Hu, A.-Q., Fu, A.-M.: Participant attack on three-party quantum key agreement with two-photon entanglement. Int. J. Theoret. Phys. 55, 55–61 (2016)

    Article  MATH  Google Scholar 

  21. Chong, S.-K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  22. Shen, D.-S., Ma, W.-P., Wang, L.-l.: Two-party quantum key agreement with four-qubit cluster states. Quant. Inform. Process. 13, 2313–2324 (2014)

  23. Yang, Y.-G., et al.: New quantum key agreement protocols based on cluster states. Quant. Inform. Process. 18, 1–17 (2019)

    MathSciNet  Google Scholar 

  24. Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quant. Inform. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Liu, B., et al.: Multiparty quantum key agreement with single particles. Quant. Inform. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Xu, G.-B., et al.: Novel multiparty quantum key agreement protocol with GHZ states. Quant. Inform. Process. 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gu, J., Hwang, T.: Improvement of ‘Novel multiparty quantum key agreement protocol with GHZ states’. Int. J. Theoret. Phys. 56, 3108–3116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Min, S.-Q., Chen, H.-Y., Gong, L.-H.: Novel multi-party quantum key agreement protocol with G-Like states and Bell states. Int. J. Theoret. Phys. 57, 1811–1822 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, Z., et al.: Improvements on ‘multiparty quantum key agreement with single particles’. Quant. Inform. Process. 12, 3411–3420 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sun, Z., et al.: New fair multiparty quantum key agreement secure against collusive attacks. Sci. Rep. 9(1), 17177 (2019)

    Article  ADS  Google Scholar 

  31. Sun, Z., et al.: Efficient multiparty quantum key agreement with a single \(d \)-level quantum system secure against collusive attack. IEEE Access 7, 102377–102385 (2019)

    Article  Google Scholar 

  32. Sihare, S.R.: Multi-party quantum key agreement protocol for detection of collusive attacks in each sub-circle segment by headers. Int. J. Theoret. Phys. 61(7), 208 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin, S., et al.: Multiparty quantum key agreement. Phys. Rev. A 104(4), 042421 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  34. Liu, W.-J., et al.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theoret. Phys. 56, 3164–3174 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quant. Inform. Process. 16, 1–19 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Yan, L., Zhang, S., Chang, Y., et al.: Semi-quantum key agreement and private comparison protocols using Bell states. Int. J. Theoret. Phys. 58, 3852–3862 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, N.-R., Zhu, K.-N., Wang, Y.-Q.: Three-party semi-quantum key agreement protocol. Int. J. Theoret. Phys. 59, 663–676 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu, T.-J., et al.: Single-state multi-party semi-quantum key agreement protocol based on multi-particle GHZ entangled states. Quant. Inform. Process. 21(7), 266 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Liu, C., et al.: New semi-quantum key agreement protocol based on the \(\chi \)-type entanglement states. Int. J. Theoret. Phys. 61(3), 60 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou, N.-R., Liao, Q., Zou, X.-F.: Multi-party semi-quantum key agreement protocol based on the four-qubit cluster states. Int. J. Theoret. Phys. 61(4), 114 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Paper presented at the 2007 first international conference on quantum, nano, and micro technologies (ICQNM’07), (2007)

  42. Gu, J., Hwang, T.: Double C-NOT attack on a single-state semi-quantum key distribution protocol and its improvement. Electronics 11(16), 2522 (2022)

    Article  Google Scholar 

  43. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Project of Natural Science Foundation of Hunan Province (2021JJ30454), Scientific research Project of Education Department of Hunan Province (22A0049, 22B0699).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Lou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Lou, X. Improvement and Flexible Multiparty Extension of Semi-Quantum Key Agreement Protocol. Int J Theor Phys 62, 252 (2023). https://doi.org/10.1007/s10773-023-05504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05504-8

Keywords

Navigation