Skip to main content
Log in

Measurement-Device-Independent Quantum Key Agreement against Collective Noisy Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum key agreement (QKA) permits participants to constitute a shared key on a quantum channel, while no participants can independently determine the shared key. However, existing Measurement-device-independent (MDI) protocols cannot resist channel noise, and noise-resistant QKA protocols cannot resist side-channel attacks caused by equipment defects. In this paper, we design a MDI-QKA protocol against collective-dephasing noise based on GHZ states. First, in our protocol, Alice and Bob prepare a certain number of GHZ states respectively, and then send two particles of each GHZ state to Charlie for bell measurement. Results are that Alice and Bob can obtain Bell states through entanglement exchange with the help of dishonest Charlie. Meanwhile our protocol can ensure the transmission process noise-resisted. Then, Alice and Bob encode their key components to the particle in their hands and construct logical quantum states against collective noise through additional particles and CNOT operation to implement MDI-QKA. Compared with existing MDI-QKA protocols, our protocol uses logical quantum states during particle transmission, which makes the protocol immune to collective-dephasing noise and thus improves the final key rate. Security analysis shows that our protocol can resist common insider and outsider attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C. H. and Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 175–179 (1984). 10.1016/j.tcs.2014.05.025

  2. Ekert, A.K.: Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992). https://doi.org/10.1103/PhysRevLett.68.3121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature. 421, 238–241 (2003). https://doi.org/10.1038/nature01289

    Article  ADS  Google Scholar 

  5. Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010). https://doi.org/10.1016/j.optcom.2010.07.022

    Article  ADS  Google Scholar 

  6. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004). https://doi.org/10.1049/el:20045183

    Article  ADS  Google Scholar 

  7. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010). https://doi.org/10.1016/j.optcom.2009.11.007

    Article  ADS  Google Scholar 

  8. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829–1834 (1999). https://doi.org/10.1103/PhysRevA.59.1829

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59, 162–168 (1999). https://doi.org/10.1103/PhysRevA.59.162

    Article  ADS  Google Scholar 

  10. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002). https://doi.org/10.1103/PhysRevLett.89.187902

    Article  ADS  Google Scholar 

  11. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002). https://doi.org/10.1103/PhysRevA.65.032302

    Article  ADS  Google Scholar 

  12. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A. 328(1), 6–10 (2004). https://doi.org/10.1016/j.physleta.2004.06.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 1–15 (2017). https://doi.org/10.1007/s11128-016-1458-x

    Article  MATH  Google Scholar 

  14. Yang, Y.-G., Lei, H., Liu, Z.-C., Zhou, Y.-H., Shi, W.-M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016). https://doi.org/10.1007/s11128-016-1293-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Wang, T.-Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11, 455–463 (2012). https://doi.org/10.1007/s11128-011-0258-6

    Article  ADS  MathSciNet  Google Scholar 

  16. Wang, T.-Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015). https://doi.org/10.1038/srep09231

    Article  Google Scholar 

  17. Liu, S.L., Zheng, D., Chen, K.F.: Analysis of information leakage in quantum key agreement. J. Shanghai Jiaotong Univ. (Sci.). E-11(2), 219–223 (2006). https://doi.org/10.1007/s002540100348

    Article  MATH  Google Scholar 

  18. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013). https://doi.org/10.1007/s11128-012-0443-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013). https://doi.org/10.1007/s11128-012-0492-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states[J]. Quantum Inf. Process. 13(12), 2587–2594 (2014). https://doi.org/10.1007/s11128-014-0816-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014). https://doi.org/10.1007/s11128-014-0785-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016). https://doi.org/10.1007/s11128-015-1155-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. He, Y.F., Ma, W.P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Theor.Phys. 14, 1650007 (2016). https://doi.org/10.1142/S0219749916500076

    Article  MathSciNet  MATH  Google Scholar 

  24. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15, 1750018 (2017). https://doi.org/10.1142/S0219749917500186

    Article  MathSciNet  MATH  Google Scholar 

  25. Gu, J., Hwang, T.: Improvement of "novel multiparty quantum key agreement protocol with GHZ states". Int. J. Theor. Phys. 56, 3108–3116 (2017). https://doi.org/10.1007/s10773-017-3478-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoher-ence-free subspaces. Science (New York, N.Y.). 290(5491), 498–501 (2000). https://doi.org/10.1126/science.290.5491.498

    Article  ADS  Google Scholar 

  27. Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891–2901 (2014). https://doi.org/10.1007/s10773-014-2087-8

    Article  MATH  Google Scholar 

  28. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13, 649–663 (2014). https://doi.org/10.1007/s11128-013-0680-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016). https://doi.org/10.1007/s11128-016-1436-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gao, H., Chen, X.G., Qian, S.R.: Two-party quantum key agreement protocols under collective noise channel. Quantum Inf. Process. 17, 140 (2018). https://doi.org/10.1007/s11128-018-1910-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Yang, Y.G., Gao, S., Li, D., et al.: Two-party quantum key agreement over a collective noisy chan-nel. Quantum Inf. Process. 18, 74 (2019). https://doi.org/10.1007/s11128-019-2187-8

    Article  ADS  MATH  Google Scholar 

  32. Wang, M.F., Zhou, Y.H., Yang, Y.G., et al.: Two-party quantum key agreement against collective noisy channel. Quantum Inf. Process. 19, 100 (2020). https://doi.org/10.1007/s11128-020-2593-y

    Article  ADS  MathSciNet  Google Scholar 

  33. Bai, M.Q., Guo, J.H., Yang, Z., Mo, Z.W.: Quantum key agreement protocols with GHZ states under collective noise channels. Int. J. Theor. Phys. 61, 63 (2022). https://doi.org/10.1007/s10773-022-05059-0

    Article  MathSciNet  MATH  Google Scholar 

  34. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev.Lett. 108, 130503 (2012). https://doi.org/10.1103/PhysRevLett.108.130503

    Article  ADS  Google Scholar 

  35. Wang, X.B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A. 72(5), 762–776 (2005). https://doi.org/10.1103/PhysRevA.72.050304

    Article  Google Scholar 

  36. Chang, C.H., Y ang, C.W., Hwang, T.: Trojan horse attack free fault-tolerant quantum key distribution protocols using ghz states. Int. J. Theor. Phys. 55(9), 1–12 (2016). https://doi.org/10.1007/s10773-016-3028-5

    Article  MathSciNet  MATH  Google Scholar 

  37. Lin, S., Zhang, X., Guo, G.-D., Wang, L.-L., Liu, X.-F.: Multiparty quantum key agreement. Phys. Rev. A. 104, 042421 (2021). https://doi.org/10.1103/PhysRevA.104.042421

    Article  ADS  MathSciNet  Google Scholar 

  38. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5633–5638 (2000). https://doi.org/10.1103/PhysRevLett.85.5635

    Article  ADS  Google Scholar 

  39. Shi, G.F.: Measurement-device-independent quantum dialogue. Chinese Physics B. 30(10), 100303 (2021). https://doi.org/10.1088/1674-1056/ac140a

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant No. 62071015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YH., Xu, Y., Yang, YG. et al. Measurement-Device-Independent Quantum Key Agreement against Collective Noisy Channel. Int J Theor Phys 61, 201 (2022). https://doi.org/10.1007/s10773-022-05187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05187-7

Keywords

Navigation