Skip to main content
Log in

Quantum Key Agreement Protocols with GHZ States Under Collective Noise Channels

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It is necessary to consider the impact of collective noise in quantum key agreement protocols. However, the efficiency of quantum key agreement protocols is generally low under the influence of collective noise. In order to improve the efficiency of the protocols, this paper proposes quantum key agreement protocols that can resist collective noise based on the measurement correlation of logical GHZ states. The efficiency analysis shows that the protocol has a qubit efficiency of 28.57%, which is higher than other protocols. Also, the security analysis proves that the protocols are resistant to external attacks and participant attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Gottesman, D.: Phys. Rev. A 61, 042311 (2000). https://doi.org/10.1103/PhysRevA.61.042311

    Article  ADS  MathSciNet  Google Scholar 

  2. Zhang, J.Z., Li, Y., Man, Z.X.: Phys. Rev. A 71, 044301 (2005). https://doi.org/10.1103/PhysRevA.71.044301

    Article  ADS  MathSciNet  Google Scholar 

  3. Deng, G.F., Long, G.L., Liu, X.S.: Phys. Rev. A 68, 042317 (2003). https://doi.org/10.1103/PhysRevA.68.042317

    Article  ADS  Google Scholar 

  4. Jiang, D.H., Xu, Y.L., Xu, G.B.: Int. J. Theor. Phys. 58 (3), 1036 (2019). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=134870032&lang=zh-cn&site=ehost-live

    Article  Google Scholar 

  5. Wang, T.Y., Wen, Q.Y., Chen, X.B.: Opt. Commun. 283 (24), 5261 (2010). https://doi.org/10.1016/j.optcom.2010.07.022. https://www.sciencedirect.com/science/article/pii/S0030401810007583

  6. Guo, G., Guo, G.: Phys. Lett. A 310 (4), 247 (2003). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9446107&lang=zh-cn&site=ehost-live

    Article  ADS  MathSciNet  Google Scholar 

  7. Allati, A., Baz, M., Hassouni, Y.: Quantum Inf. Process 10 (5), 589 (2011). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=65020733&lang=pt-br&site=ehost-live

    Article  MathSciNet  Google Scholar 

  8. Lo, H., Chau, H.: Science 283 (5410), 2050 (1999). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=1703227&lang=zh-cn&site=ehost-live

    Article  ADS  Google Scholar 

  9. Bourennane, M., Karlsson, A., Björk, G.: Phys. Rev. A 64, 012306 (2001). https://doi.org/10.1103/PhysRevA.64.012306

    Article  ADS  Google Scholar 

  10. Gao, F., Guo, F., Wen, Q., Zhu, F.: Phys. Lett. A 349 (1-4), 53 (2006). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=19338818&lang=zh-cn&site=ehost-live

    Article  ADS  Google Scholar 

  11. Zhou, N., Zeng, G., Xiong, J.: Electron. Lett. (Inst. Eng. Technol.) 40(18), 1149 (2004). https://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=14329439&lang=zh-cn&site=ehost-live

    ADS  Google Scholar 

  12. Chong, S.K., Hwang, T.: Opt. Commun. 283(6), 1192 (2010). https://doi.org/10.1016/j.optcom.2009.11.007. https://www.sciencedirect.com/science/article/pii/S0030401809011316

    Article  ADS  Google Scholar 

  13. Tsai, C.W., Chong, S.K., Hwang, T.: Nephron Clinical Practice, pp 47–49 (2010)

  14. Shi, R.H., Zhong, H.: Quantum Inf. Process. 12 (2), 921 (2013). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=84695721&lang=zh-cn&site=ehost-live

    Article  ADS  MathSciNet  Google Scholar 

  15. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum Inf. Process. 13(3), 649 (2014). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=94231656&lang=zh-cn&site=ehost-live

    Article  ADS  MathSciNet  Google Scholar 

  16. Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Int. J. Theor. Phys. 53(9), 2891 (2014). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=97460852&lang=zh-cn&site=ehost-live

    Article  Google Scholar 

  17. He, Y.F., Ma, W.P.: Quantum Inf. Process. 15(12), 5023 (2016). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=119629325&lang=zh-cn&site=ehost-live

    Article  ADS  MathSciNet  Google Scholar 

  18. Gao, H., Chen, X.G., Qian, S.R.: Quantum Inf. Process. 17(6), 1 (2018). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=129928283&lang=pt-br&site=ehost-live

    Article  Google Scholar 

  19. Cai, B.B., Guo, G.D., Lin, S., Zuo, H.J., Yu, C.H.: IEEE Photon. J. 10(1), 1 (2018). https://doi.org/10.1109/JPHOT.2018.2797535

    Article  Google Scholar 

  20. Yang, Y.G., Gao, S., Li, D., Zhou, Y.H., Shi, W.M.: Quantum Inf. Process. 18(3), 1 (2019). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=135041039&lang=zh-cn&site=ehost-live

    Google Scholar 

  21. Wang, S.S., Jiang, D.H., Xu, G.B., Zhang, Y.H., Liang, X.Q.: Quantum Inf. Process. 18(6), 190 (2019). https://doi.org/10.1007/s11128-019-2305-7

    Article  ADS  Google Scholar 

  22. Tang, J., Shi, L., Wei, J.: Ad. Lasers Optoelectron. 40(18), 1149 (2020). https://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=14329439&lang=zh-cn&site=ehost-live

    Google Scholar 

  23. Ye, T.Y.: Int. J. Theor. Phys. 53 (11), 3719 (2014). https://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=98676669&lang=pt-br&site=ehost-live

    Article  Google Scholar 

  24. Li, X.H., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 74, 054302 (2006). https://doi.org/10.1103/PhysRevA.74.054302

    Article  ADS  Google Scholar 

  25. Cabello, A.: Phys. Rev. Lett. 85, 5635 (2000). https://doi.org/10.1103/PhysRevLett.85.5635

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.11671284) and Sichuan Science and Technology Program(Grant NO.2020YFG0290).

Author information

Authors and Affiliations

Authors

Contributions

In fact, all of the authors’ contributions to this paper are important. The specific contributions are as follows. The first author played a major role in the conceptualization and writing of the article. The second author worked mainly on the overall framework and language of the article. The third and fourth authors mainly guided the article in terms of its core ideas and expertise.

Corresponding author

Correspondence to Ming-Qiang Bai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Jh., Yang, Z., Bai, MQ. et al. Quantum Key Agreement Protocols with GHZ States Under Collective Noise Channels. Int J Theor Phys 61, 63 (2022). https://doi.org/10.1007/s10773-022-05059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05059-0

Keywords

Navigation