Skip to main content
Log in

Two-party quantum key agreement against collective noisy channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum key agreement (QKA) permits participants to constitute a shared key on a quantum channel, and no participants are able to independently determine the shared key. In fact, particles are frequently affected by channel noise in the transmission process of quantum channel. Under the cover of noise, attackers can launch malicious attacks. In this thesis, on account of the usage of entanglement swapping of GHZ state and logical Bell states, we design two two-party QKA protocols which are immune to collective-dephasing noise and collective-rotation noise, respectively. In comparison with the existing QKA protocols of two parties, the proposed protocols have better quantum resource cost and the qubit efficiency in the global scope. Security analysis reveals that they can resist not only attacks by participants but also external attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. New York: IEEE (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)

    Article  Google Scholar 

  4. Hsueh, C.C., Chen, C.Y. In: Proceedings of the 14th Information Security Conference (ISC 2004), pp. 236–242. National Taiwan University of Science and Technology, Taipei (2004)

  5. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  7. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  8. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  9. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  11. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  12. Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 1–15 (2017)

    Article  MATH  Google Scholar 

  14. Yang, Y.-G., Lei, H., Liu, Z.-C., Zhou, Y.-H., Shi, W.-M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Wang, T.-Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11, 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wang, T.-Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signature. Sci. Rep. 5, 9231 (2015)

    Article  Google Scholar 

  17. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  19. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  MATH  Google Scholar 

  21. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15(03), 1750018 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cai, B., Guo, G., Lin, S.: Multi-party quantum key agreement with teleportation. Mod. Phys. Lett. B 31(10), 1750102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7, 45046 (2017)

    Article  ADS  Google Scholar 

  26. Sun, Z.W., Zhang, C., Wang, B.H., Li, Q., Long, D.Y.: Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science (New York, N.Y.) 290(5491), 498–501 (2000)

    Article  ADS  Google Scholar 

  28. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891 (2014)

    Article  MATH  Google Scholar 

  30. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gao, H., Chen, X.G., Qian, S.R.: Two-party quantum key agreement protocols under collective noise channel. Quantum Inf. Process. 17, 140 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  33. Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  35. Qin, S., Gao, F., Wen, Q., Zhu, F.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  36. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)

    Article  ADS  Google Scholar 

  37. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  38. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  39. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  40. Yang, Y.G., Gao, S., Li, D., et al.: Two-party quantum key agreement over a collective noisy channel. Quantum Inf. Process. 18, 74 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Xiangbin, Wang: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72(5), 762–776 (2005)

    Google Scholar 

  42. Zhou, N., Zeng, G., Zeng, W., et al.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254(4–6), 380–388 (2005)

    Article  ADS  Google Scholar 

  43. Gui-Tong, Wu, Nan-Run, Zhou, Li-Hua, Gong, et al.: Quantum dialogue protocols with identification over collection noisy channel without information leakage. Acta Phys. Sin. 63(6), 060302 (2014)

    Google Scholar 

  44. Jun, G., Po-Hua, L., Tzonelih, H.: Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol’. Quantum Inf. Process. 17(7), 182 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Beijing Natural Science Foundation (Grant Nos. 4182006, 4162005) and National Natural Science Foundation of China (Grant Nos. 61572053, 61472048, 61671087, U1636106, 61602019, 61502016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Feng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YH., Wang, MF., Shi, WM. et al. Two-party quantum key agreement against collective noisy channel. Quantum Inf Process 19, 100 (2020). https://doi.org/10.1007/s11128-020-2593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2593-y

Keywords

Navigation