Skip to main content
Log in

Mutual Weak Quantum Users Key Agreement Protocol Based on Semi-Honest Quantum Server

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Key agreement is an important research direction of key management. Different from the key distribution protocol, the key agreement protocol not only needs to ensure the security of the key, but also needs to ensure the fairness between participants. This paper proposed a high-dimensional quantum key agreement protocol by using single-particle states based on quantum Fourier transform, which enables two users with weak quantum ability to negotiate a session key equally with the help of semi-honest quantum server TP. In the protocol, the weak quantum participants do not need to have the ability to measure and store quantum. They only need to be able to perform reflection and unitary operation to complete the key agreement. The main quantum operations are completed by TP, and Alice and Bob can use TP through leasing. Security analysis proves that the proposed protocol can resist both the outside attack and participant attack. Compared with the related semi-quantum key agreement protocol, this protocol has lower resource, higher efficiency and security, which is more suitable for practical application scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Article  ADS  Google Scholar 

  2. Liu, S.L., Zheng, D., Cheng, K.F.: Analysis of information leakage in quantum key agreement. J. Shanghai Jiaotong Univ. (Sci.). 11, 219–223 (2006)

    MATH  Google Scholar 

  3. Tsai, C. and Hwang, T.: On quantum key agreement protocol. Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009)

  4. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  5. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  Google Scholar 

  6. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15(03), 1750018 (2017)

    Article  MathSciNet  Google Scholar 

  7. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurement. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multi-party quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on multi-party quantum key agreement with single particles. Quantum Inf. Process. 12, 3411–3420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  Google Scholar 

  13. Gu, J., Hwang, T.: Improvement of novel multi-party quantum key agreement protocol with GHZ states. Int. J. Theor. Phys. 56, 3108–3116 (2017)

    Article  Google Scholar 

  14. Cai, B.B., Guo, G.D., Lin, S.: Multi-party quantum key agreement with teleportation. Mod. Phys. Lett. B. 31, 1750102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Wang, P., Sun, Z.W., Sun, X.Q.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16, 170 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A. 79(3), 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Yan, L., Zhang, S., Chang, Y.S., Z. W. and Sun Y. Hu.: Semi-quantum key agreement and private comparison protocols using bell states. Int. J. Theor. Phys. 58, 3852–3862 (2019)

    Article  MathSciNet  Google Scholar 

  20. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56, 3164–3174 (2017)

    Article  MathSciNet  Google Scholar 

  21. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020)

    Article  MathSciNet  Google Scholar 

  22. Li, H.H., Gong, L.H., Zhou, N.R.: New semi-quantum key agreement protocol based on high-dimensional single-particle states. Chin. Phys. B. 29(11), 110304 (2020)

    Article  ADS  Google Scholar 

  23. Chuan, W., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A. 71, 044305 (2005)

    Article  ADS  Google Scholar 

  24. Wang, J., Yang, J.Y., Fazal, I., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics. 6, 488–496 (2012)

    Article  ADS  Google Scholar 

  25. Kamil, B., Mohammad, M., Robert, F., Anne, B., Robert, B.: Finite-key security analysis for multilevel quantum key distribution. New J. Phys. 18, 073030 (2016)

    Article  MathSciNet  Google Scholar 

  26. Ye, C.Q., Ye, T.Y.: Circular multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58, 1282–1294 (2019)

    Article  MathSciNet  Google Scholar 

  27. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351(1–2), 23–25 (2006)

    Article  ADS  Google Scholar 

  28. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A. 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  29. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A. 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  30. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  31. Bechmann-Pasquinucci, H., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A. 61(6), 062308 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. Chau, H.F.: Unconditionally secure key distribution in higher dimensions by depolarization. IEEE Trans. Infor. Theory. 51(4), 1451–1468 (2005)

    Article  MathSciNet  Google Scholar 

  33. Nikolopoulos, G.M., Ranade, K.S., Alber, G.: Error tolerance of two-basis quantum-key-distribution protocols using qudits and two-way classical communication. Phys. Rev. A. 73(3), 032325 (2006)

    Article  ADS  Google Scholar 

  34. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature. 509(7501), 475–478 (2014)

    Article  ADS  Google Scholar 

  35. Yin, Z.Q., Wang, S., Chen, W., Han, Y.G., Wang, R., Guo, G.C., Han, Z.F.: Improved security bound for the round robin-differential-phase-shift quantum key distribution. Nat. Commun. 9(1), 1–8 (2018)

    Article  ADS  Google Scholar 

  36. Iqbal, H., Krawec, W.O.: High-dimensional semiquantum cryptography. IEEE Trans. Quantum Eng. 1, 1–17 (2020)

    Article  Google Scholar 

  37. Doda, M., Huber, M., Murta, G., Pivoluska, M., Plesch, M., Vlachou, C.: Quantum key distribution overcoming extreme noise: simultaneous subspace coding using high-dimensional entanglement. Phys. Rev. Appl. 15(3), 034003 (2021)

    Article  ADS  Google Scholar 

  38. Cozzolino, D., Lio, B.A., Bacco, D., Oxenlowe, L.K.: High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2(12), 1900038 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 62076042, 62102049), the Key Research and Development Project of Sichuan Province (Nos. 2022NSFSC0535, 2021YFSY0012, 2021YFG0332), the Key Research and Development Project of Chengdu (No.2021-YF05-02424-GX), the Innovation Team of Quantum Security Communication of Sichuan Province (No.17TD0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lili.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lili, Y., Shibin, Z., Yan, C. et al. Mutual Weak Quantum Users Key Agreement Protocol Based on Semi-Honest Quantum Server. Int J Theor Phys 61, 198 (2022). https://doi.org/10.1007/s10773-022-05161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05161-3

Keywords

Navigation