Skip to main content
Log in

Effect of Noise in the Quantum Bidirectional Direct Communication Protocol Using Non- maximally Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Possibility of using non-maximally entangled states in quantum bidirectional direct communication has been shown recently by Srikanth A and Balakrishnan (Quantum Inf. Process. 19:133, 2020) [1]. The effect of noise in this protocol is analyzed by considering amplitude and phase damping models. Suitable combinations of messages and initial states are identified to minimize the effect of noise in the protocol. Further, we have shown the possibility of demarking the effects due to noise and the intruder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Srikanth, A., Balakrishnan, S.: Controller-independent quantum bidirectional communication using non-maximally entangled states. Quantum Inf. Process. 19(4), 1–11 (2020)

    Article  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  6. Nurhadi, A. I. and Syambas, N. R.: Quantum Key Distribution (QKD) Protocols: A Survey, IEEE 4th International Conference on Wireless and Telematics (ICWT) 1–5. https://doi.org/10.1109/ICWT.2018.8527822 (2018)

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two step quantum direct communication protocol using Einstein-Podolsky-Rosen block. Phys. Rev. A. 68(04), 042317 (2003)

    Article  ADS  Google Scholar 

  8. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  9. Cai, Q.Y., Li, B.W.: Improving the capacity of the Bostrom and Felbinger protocol. Phys. Rev. A. 69(5), 054301 (2004)

    Article  ADS  Google Scholar 

  10. Chen, X.B., Wang, T.Y., Du, J.Z., Wen, Q.Y., Zhu, F.C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf. 6(03), 543–551 (2008)

    Article  Google Scholar 

  11. Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Controlled quantum secure direct communication with W state. Int. J. Quantum Inf. 6(04), 899–906 (2008)

    Article  Google Scholar 

  12. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A. 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22(1), 22–24 (2005)

    Article  ADS  Google Scholar 

  14. Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chinese. Phys. 15(7), 1418–1420 (2006)

    Article  ADS  Google Scholar 

  15. Man, Z.X., Xia, Y.J., Zhang, Z.J.: Secure deterministic bidirectional communication without entanglement. Int. J. Quantum Inf. 4(4), 739–746 (2006)

    Article  Google Scholar 

  16. Dong, L., Xiu, X.M., Gao, Y.J., Chi, F.: A controlled quantum dialogue protocol in the network using entanglement swapping. Opt. Commun. 281(24), 6135–6138 (2008)

    Article  ADS  Google Scholar 

  17. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two bell states and the shared secret bell state. Phys. Scr. 89(1), 015103 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical bell states and the shared auxiliary logical bell state. Quantum Inf. Process. 14(4), 1469–1486 (2015)

    Article  ADS  Google Scholar 

  20. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)

    Article  ADS  Google Scholar 

  21. Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15(6), 2593–2603 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ye, T.Y.: Large payload bidirectional quantum secure direct communication without information leakage. Int. J. Quantum Inf. 11(05), 1350051 (2013)

    Article  MathSciNet  Google Scholar 

  23. Shi, G.F.: Bidirectional quantum secure communication scheme based on bell states and auxiliary particles. Opt. Commun. 283(24), 5275–5278 (2010)

    Article  ADS  Google Scholar 

  24. Ye, T.Y.: Quantum secure dialogue with quantum encryption. Commun. Theor. Phys. 62(3), 338–342 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Shi, G.F., Tian, X.L.: Quantum secure dialogue based on single photons and controlled-not operations. J. Mod. Opt. 57(20), 2027–2030 (2010)

    Article  ADS  Google Scholar 

  26. Gao, G., Fang, M., Wang, Y., Zang, D.J.: A ping-pong quantum dialogue scheme using genuine four-particle entangled states. Int. J. Theor. Phys. 50(10), 3089–3095 (2011)

    Article  MathSciNet  Google Scholar 

  27. Ye, T.Y.: Quantum dialogue without information leakage using a single quantum entangled state. Int. J. Theor. Phys. 53(11), 3719–3727 (2014)

    Article  Google Scholar 

  28. Kao, S.H., Hwang, T.: Controlled quantum dialogue robust against conspiring users. Quantum Inf. Process. 15(10), 4313–4324 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zarmehi, F., Houshmand, M.: Controlled bidirectional quantum secure direct communication network using classical XOR operation and quantum entanglement. IEEE Commun. Lett. 20(10), 2071–2074 (2016)

    Article  Google Scholar 

  30. Li, W., Zha, X.W., Yu, Y.: Secure quantum dialogue protocol based on four-qubit cluster state. Int. J. Theor. Phys. 57(2), 371–380 (2018)

    Article  MathSciNet  Google Scholar 

  31. Ye, T.Y., Ye, C.Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)

    Article  MathSciNet  Google Scholar 

  32. Ye, T.: Information leakage resistant quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 57(12), 2266–2275 (2014)

    Article  ADS  Google Scholar 

  33. Ye, T.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58(4), 1–10 (2015)

    Article  Google Scholar 

  34. Zhang, M.H., Cao, Z.W., Peng, J.Y., Chai, G.: Fault tolerant quantum dialogue protocol over a collective noise channel. Eur. Phys. J. D. 73(3), 1–8 (2019)

    Article  Google Scholar 

  35. Chang, C.H., Luo, Y.P., Yang, C.W., Hwang, T.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process. 16(6), 147 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Nielsen, M. A. and Chuang, I. L.: Quantum Computation and Quantum Information, (Cambridge University Press), Cambridge (2000)

  38. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 4681–4710 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balakrishnan.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, M., Balakrishnan, S. Effect of Noise in the Quantum Bidirectional Direct Communication Protocol Using Non- maximally Entangled States. Int J Theor Phys 61, 127 (2022). https://doi.org/10.1007/s10773-022-05115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05115-9

Keywords

Navigation