Skip to main content
Log in

W-state-based Semi-quantum Private Comparison

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Semi-quantum private comparison, which authorizes two classical participants to compare the equality of their private information with the cooperation of a semi-honest third party without unveiling privacy. The W-state is more robust against the loss of any single qubit than the GHZ state. In this paper, an efficient and secure semi-quantum private comparison protocol based on W-state is proposed for the first time. The qubit efficiency comparison shows the proposed protocol is more efficient than the similar literature. Moreover, the security of the devised protocol concerning various kinds of outside attack and inside attack is discussed. The security analysis demonstrates that outside eavesdropper, inside dishonest participant and semi-honest third party cannot obtain any private information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceeding of IEEE International Conference on Computers Institute of Electrical and Electronics Engineers (1984)

  2. Cabello, A.: Quantum key distribution in the holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  3. Li, L.L., Li, L., Chang, Y., et al.: Quantum key distribution based on Single-Particle and EPR entanglement. Sci. China Inform. Sci. 63, 256 (2020)

    Google Scholar 

  4. Li, L.L., Li, J., Li, C.Y., et al.: Deterministic quantum secure direct communication protocol based on Omega state. IEEE Access 7, 6915 (2019)

    Article  Google Scholar 

  5. Williams, B.P., Lukens, J.M., Peters, N.A., et al.: Quantum secret sharing with polarization-entangled photon pairs. Phys. Rev. A 99, 062311 (2019)

    Article  ADS  Google Scholar 

  6. Yang, Y.G., Li, B.R., Li, D., et al.: New quantum key agreement protocols based on Bell states. Quantum Inf. Process., 18 (2019)

  7. Yao, A.C.: Protocols for secure computation. In: Proceeding of the 23rd Annual IEEE Symposium on Foundations of Computer Science, 160 (1982)

  8. Zhao, D., Gang, X., Chen, X.B., et al.: Rational protocol of quantum secure multi-party computation. Quantum Inf. Process., 17 (2018)

  9. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J.Phys. A Math. Theor. 42, 30 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13, 101 (2014)

    Article  ADS  Google Scholar 

  11. Li, Y.B., Qin, S.J., Yuan, Z., et al.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12, 2191–2205 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212 (2013)

    Article  MathSciNet  Google Scholar 

  13. Li, C.Y., Chen, X.B., Li, H.J., et al..: And Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 18, 158 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12, 1981 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yang, Y.G., Xia, J., Jia, X., Hua, Z.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12, 877 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  17. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Boyer, M., Ran, G., Dan, K., Mor, T.: Semi-quantum key distribution. Phys. Rev. A 79, 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zou, X.F., Qiu, D.W., Li, L.Z., et al.: Semi-quantum key distribution using less than four quantum states. Phys. Rev. A 79, 052312 (2009)

    Article  ADS  Google Scholar 

  20. Krawec, W.O.: Mediated Semi-Quantum key distribution. Phys. Rev. A 91, 032323 (2014)

    Article  ADS  Google Scholar 

  21. Tian, Y., Li, J., Yuan, K.G., et al.: An efficient semi-quantum key distribution protocol based on EPR and single-particle hybridization. Quantum Inform. Comput. 21(7-8), 563–576 (2021)

    Article  MathSciNet  Google Scholar 

  22. Tsai, C.W., Yang, C.W., Lee, N.Y.: Semi-quantum secret sharing protocol using w- state. Modern Phys. Lett. A 34, 1950213 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Tian, Y., Li, J., Chen, X.B., et al.: An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf. Process. 20(6), 1–11 (2021)

    Article  MathSciNet  Google Scholar 

  24. Zou, X.F., Qiu, D.W.: Three-step semi-quantum secure direct communication protocol. Science China(Physics, Mechanics, Astronomy) 57, 1696 (2014)

    Article  ADS  Google Scholar 

  25. Yang, C.W., Tsai, C.W.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19, 1 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. http://arxiv.org/pdf/quant-ph/160707961.pdf(2016)

  27. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. International Journal of Quantum Information, 165 (2016)

  28. Lang, Y.F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57, 3048 (2018)

    Article  MathSciNet  Google Scholar 

  29. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57, 3819 (2018)

    Article  MathSciNet  Google Scholar 

  30. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process 18, 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zhou, N.R., Xu, Q.D., Du, N.S., Gou, L.H.: Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Inf. Process 20 (2021)

  32. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2001)

    Article  ADS  Google Scholar 

  33. Deng, F.G., Zhou, P., Li, X.H., et al.: Robustness of two-way quantum communication protocols against Trojan horse attack. http://arxiv.org/pdf/quant-ph/0508168.pdf (2018)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 92046001, 61962009, the Fundamental Research Funds for the Central Universities under Grant 2019XD-A02, the Open Research Project of the State Key Laboratory of Media Convergence and Communication under Grant KLMCC2020KF006. We also would like to thank the anonymous reviewers for their detailed review and valuable comments, which have enhanced the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, J., Ye, C. et al. W-state-based Semi-quantum Private Comparison. Int J Theor Phys 61, 18 (2022). https://doi.org/10.1007/s10773-022-05005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05005-0

Keywords

Navigation