Skip to main content
Log in

Quantum private comparison against decoherence noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a quantum private comparison scheme which can be used in decoherence noise scenario. With the combination of decoherence-free states and error-correcting code, it achieves a fault tolerant quantum private comparison to prevent collective decoherence noise and limited other decoherence noise. And the third party used in the protocol is not needed to be semi-honest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In an ideal scenario, Calvin can obtain the comparison result with \(K_C\) if Alice and Bob use their private information \(M_A\) and \(M_B\) to replace \(K_A\) and \(K_B\), respectively. However, in the presented protocol, some bits in \(K^*_A\) and \(K^*_B\) (which \(K_A\) and \(K_B\) come form) are used randomly to detect cheats which happen in non-ideal scenario. So Alice and Bob do not know which bits in \(K^*_A\) and \(K^*_B\) will become \(K_A\) and \(K_B\) ultimately. Consequently, they cannot use their private information to replace \(K_A\) and \(K_B\).

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, pp. 175–179. Bangalore, India, IEEE press, New York (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  4. Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)

    Article  ADS  Google Scholar 

  5. Allati, A.E., Baz, M.E., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10(5), 589–602 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  7. Hillery, M., Buzěk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  9. Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A. 65–68, 373 (2008)

    Google Scholar 

  10. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quantum Inf. Process. 10(5), 603–608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(5–6), 0434–0443 (2011)

    MathSciNet  Google Scholar 

  12. Jiang, M., Huang, X., Zhou, L.L., Zhou, Y.M., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57(10), 1089–1094 (2012)

    Article  Google Scholar 

  13. Massound, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China-Phys. Mech. Astron. 55(10), 1828–1831 (2012)

    Article  ADS  Google Scholar 

  14. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  15. Bostroem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  16. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  17. Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, Wy: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  18. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  19. Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quantum Inf. Process. 10(3), 317–323 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, T.Y., Wen, Q.Y.: Controlled quantum teleportation with Bell states. Chin. Phys. B 20(4), 040307 (2011)

    Article  ADS  Google Scholar 

  21. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  23. Chen, X.B., Wen, Q.Y., Zhu, F.C.: Quantum circuits for probabilistic entanglement teleportation via a partially entangled pair. Int. J. Quantum Inf. 5, 717–728 (2007)

    Article  MATH  Google Scholar 

  24. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  25. Jiang, M., Li, H., Zhang, Z.K., Zeng, J.: Faithful teleportation via multi-particle quantum states in a network with many agents. Quantum Inf. Process. 11(1), 23–40 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yao, A.C.: Protocols for secure Computation. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, Washington, DC (1982)

  27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM, New York, NY (1987)

  28. Mayers, D.: Unconditional secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)

    Article  ADS  Google Scholar 

  29. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)

    Article  ADS  Google Scholar 

  30. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Lecture Notes in Computer Science, vol. 4622, pp. 572–590. Springer-Verlag, Berlin/Heidelberg (2007)

  31. Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun. 282(16), 3382–3385 (2009)

    Article  ADS  Google Scholar 

  32. Wang, C., Hao, L., Zhao, L.J.: Implementation of quantum private queries using nuclear magnetic resonance. Chin. Phys. Lett. 28(8), 080302 (2011)

    Article  ADS  Google Scholar 

  33. Li, Y.B., Wen, Q.Y., Qin, S.: Improved secure multiparty computation with a dishonest majority via quantum means. Int. J. Theor. Phys. doi:10.1007/s10773-012-1319-z (2012)

  34. Wang, T.Y., Wen, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  35. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  36. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Physica Scripta 80, 065002 (2009)

    Article  ADS  Google Scholar 

  37. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  38. Lin, J., Tseng, H.Y., Hwang, T.: InterceptCresend attacks on Chen et al’.s quantum private comparison protocol and the improvements. Opt. Commun. 284, 2412–2414 (2011)

    Article  ADS  Google Scholar 

  39. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  40. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110 (2012)

    Article  ADS  Google Scholar 

  43. Liu, W., Wang, Y.B., Tao, J.Z., Cao, Y.Z.: A protocol for the quantum private comparison of equality with-type state. Int. J. Theor. Phys. 51, 69–77 (2012)

    Article  MATH  Google Scholar 

  44. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0433-4

  46. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Mathematical Lib, North-Holland (1977)

  47. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  48. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)

    Google Scholar 

  49. Steane, A.M.: Error Correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Google Scholar 

  50. Wang, X.B.: Quantum error-rejection code with spontaneous parametric down-conversion. Phys. Rev. A 69, 022320 (2004)

    Article  ADS  Google Scholar 

  51. Chen, T.Y., Zhang, J., Boileau, J.C., Jin, X.M., Yang, B., Zhang, Q., Yang, T., Laflamme, R., Pan, J.W.: Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504 (2006)

    Article  ADS  Google Scholar 

  52. Lidar, D.A., Chuang, Il, Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  53. Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Protecting quantum information encoded in decoherence-free states against exchange errors. Phys. Rev. A 61, 052307 (2000)

    Article  ADS  Google Scholar 

  54. Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A. 63, 042307 (2001)

    Article  ADS  Google Scholar 

  55. Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)

    Article  ADS  Google Scholar 

  56. Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75, 020301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  57. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  58. Ji, C.H., Yee, Y., Choi, J., Kim, S.H., Bu, J.U.: Electromagnetic 2\(\times \)2 MEMS optical switch. IEEE J. Sel. Top. Quantum Electron. 10, 345 (2004)

    Google Scholar 

  59. Gao, F., Qin, S., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329C334 (2007)

    MathSciNet  Google Scholar 

  60. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  61. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: quantum exam. Phys. Lett. A 360, 748–750 (2007) [Phys. Lett. A 350, 174 (2006)]

    Google Scholar 

  62. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192–195 (2010)

    Article  ADS  Google Scholar 

  63. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  64. Song, T.T., Zhang, J., Gao, F., Wen, Q.Y., Zhu, F.C.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)

    Article  ADS  Google Scholar 

  65. Guo, F.Z., Qin, S.J., Gao, F., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)

    Article  ADS  Google Scholar 

  66. Lin, S., Gao, F., Guo, F.Z., Zhu, F.C.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  67. Li, Y.B., Wen, Q.Y., Qin, S.: Comment on secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 84, 016301 (2011)

    Article  ADS  Google Scholar 

  68. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  69. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61170270, 61100203, 61003286, 61121061, and 61103210), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 20090005110010), Beijing Natural Science Foundation (Grant Nos. 4112040, and 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2011YB01), and Key Laboratory Funds of BESTI (Grant No.YQNJ0903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Bing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YB., Qin, SJ., Yuan, Z. et al. Quantum private comparison against decoherence noise. Quantum Inf Process 12, 2191–2205 (2013). https://doi.org/10.1007/s11128-012-0517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0517-1

Keywords

Navigation