Skip to main content
Log in

Multi-Party Quantum Private Comparison with Qudit Shifting Operation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a multi-party quantum private comparison (MQPC) protocol is proposed based on the qudit shifting operation. The semi-honest third party (TP) prepares the initial particles and sends them to the first user. Then, each of n users encodes his private integers on the travelling particles with the qudit shifting operations and transmits them to the next user. Finally, the travelling particles are transmitted back to TP. The equality of the private integers from n users can be determined within one time execution of the protocol. It is verified that the proposed protocol is secure against both the outside attack and the participant attack. One user cannot obtain other users’ private integers except for the case that their private integers are same. TP cannot know the private integers from n users except their comparison result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), Washington, DC, USA, 1982, pp.160

  2. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  4. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80, 065002 (2009)

    Article  ADS  Google Scholar 

  5. Yang, Y.G., Xia, J., Jia, X., Shi, L., Zhang, H.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10, 1250065 (2012)

    Article  MathSciNet  Google Scholar 

  6. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12, 887–897 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Li, Y.B., Ma, Y.J., Xu, S.W., Huang, W., Zhang, Y.S.: Quantum private comparison based on phase encoding of single photons. Int. J. Theor. Phys. 53, 3191–3200 (2014)

    Article  Google Scholar 

  8. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    Article  MathSciNet  Google Scholar 

  9. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65, 711–715 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol withn-level entangled states. Quantum Inf. Process. 13, 2375–2389 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14, 4225–4235 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ye, T.Y.: Multi-party quantum private comparison protocol based on entanglement swapping of Bell entangled states. Commun. Theor. Phys. 66(3), 280–290 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Liu, W., Wang, Y.B.: Dynamic multi-party quantum private comparison protocol with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 5307–5317 (2016)

    Article  Google Scholar 

  15. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using GHZ states. Int. J. Theor. Phys. 55, 2969–2976 (2016)

    Article  Google Scholar 

  16. Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping ofd-level Cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177 (2017)

    Article  ADS  Google Scholar 

  18. Ye, T.Y., Ji, Z.X.: Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Sci. China Phys. Mech. Astron. 60(9), 090312 (2017)

    Article  ADS  Google Scholar 

  19. Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation withd-level single-particle states. Quantum Inf. Process. 17(10), 252 (2018)

    Article  ADS  Google Scholar 

  20. Duan, M.Y.: Multi-party quantum summation within a d-level quantum system. Int. J. Theor. Phys. 59, 1638–1643 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Ming-Yi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming-Yi, D. Multi-Party Quantum Private Comparison with Qudit Shifting Operation. Int J Theor Phys 59, 3079–3085 (2020). https://doi.org/10.1007/s10773-020-04554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04554-6

Keywords

Navigation