Skip to main content
Log in

An Optimized Design of Serial-Input-Serial-Output (SISO) and Parallel-Input-Parallel-Output (PIPO) Shift Registers Based on Quantum Dot Cellular Automata Nanotechnology

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum-dot Cellular Automata (QCA) is one of the proposed nanotechnologies in the electronics industry which offers a new construction for scheming digital circuits with less energy consumption on the nano-scale and possibly can be an appropriate replacement of Complementary Metal Oxide Semiconductor (CMOS) technology. Since shift registers are usually used in the digital circuits designing, its scheming is a very challenging research topic. Therefore, in this paper, firstly a new design of D-flip-flop has been introduced. Then this efficient element is used for designing an optimized Serial-Input-Serial-Output (SISO) and Parallel-Input-Parallel-Output (PIPO) shift registers based on QCA technology. Simulations using QCADesigner computational tool are done to check the performance of the suggested designs. They have shown that the suggested designs are stable and applicable structures regarding area, delay and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lim, L. A., Ghazali, A., Yan, S. C. T., and Fat, C. C., Sequential circuit design using quantum-dot cellular automata (qca), in 2012 IEEE International Conference on Circuits and Systems (ICCAS), pp. 162–167: IEEE (2012)

  2. Sen, B., Goswami, M., Some, S., and Sikdar, B. K., Design of sequential circuits in multilayer qca structure, in 2013 International Symposium on Electronic System Design, pp. 21–25: IEEE (2013)

  3. Kummamuru, R.K., Orlov, A.O., Ramasubramaniam, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans Electron Devices. 50(9), 1906–1913 (2003)

    Article  ADS  Google Scholar 

  4. Chakrabarty, R., Mahato, D. K., Banerjee, A., Choudhuri, S., Dey, M., and Mandal, N., A novel design of flip-flop circuits using quantum dot cellular automata (QCA), in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pp. 408–414: IEEE (2018)

  5. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 1–11 (2017)

  6. Ahmad, F.: An optimal design of QCA based 2n: 1/1: 2n multiplexer/demultiplexer and its efficient digital logic realization. Microprocess. Microsyst. 56, 64–75 (2018)

    Article  Google Scholar 

  7. Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 1–11 (2018)

  8. Zoka, S., Gholami, M.: A novel rising edge triggered resettable D flip-flop using five input majority gate. Microprocess. Microsyst. 61, 327–335 (2018)

    Article  Google Scholar 

  9. Binaei, R., Gholami, M.: Design of novel D flip-flops with set and reset abilities in quantum-dot cellular automata nanotechnology. Comput Electr Eng. 74, 259–272 (2019)

    Article  Google Scholar 

  10. Chaves, J.F., Ribeiro, M.A., Silva, L.M., de Assis, L.M., Torres, M.S., Neto, O.P.V.: Energy efficient QCA circuits design: simulating and analyzing partially reversible pipelines. J. Comput. Electron. 17(1), 479–489 (2018)

    Article  Google Scholar 

  11. Abedi, D., Jaberipur, G.: Decimal full adders specially designed for quantum-dot cellular automata. IEEE Trans Circuits Syst Express Briefs. 65(1), 106–110 (2018)

    Article  Google Scholar 

  12. Salimzadeh, F., Heikalabad, S.R.: Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Phys. B Condens. Matter. 556, 163–169 (2019)

    Article  ADS  Google Scholar 

  13. Naji Asfestani, M., Rasouli Heikalabad, S.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Physica B: Condensed Matter. 512, 91–99 (2017)

    Article  ADS  Google Scholar 

  14. Thakur, G., Sarvagya, M., Sharan, P.: Design and implementation of crossbar scheduler for system-on-chip network in quantum dot cellular automata technology. Internet Technology Letters. 1(6), e26 (2018)

    Article  Google Scholar 

  15. Binaei, R., Gholami, M.: Design of Multiplexer-Based D Flip-Flop with set and reset ability in quantum dot cellular automata nanotechnology. Int. J. Theor. Phys. 1–13 (2018)

  16. Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun Networks. 16, 1–9 (2018)

    Article  Google Scholar 

  17. Torres, F.S., Wille, R., Niemann, P., Drechsler, R.: An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans Comput Aided Des Integr Circuits Syst. (2018)

  18. Babaie, S., Sadoghifar, A., Bahar, A.N.: Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans Circuits Syst Express Briefs. 2018,

  19. Mohaghegh, S.M., Sabbaghi-Nadooshan, R., Mohammadi, M.: Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model. Comput Electr Eng. 71, 43–59 (2018)

    Article  Google Scholar 

  20. Hosseinzadeh, H., Heikalabad, S.R.: A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron. Eng. 192, 52–60 (2018)

    Article  Google Scholar 

  21. Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 1–22 (2017)

  22. Mosleh, M.: A novel design of multiplexer based on nano-scale quantum-dot cellular automata. Concurrency and Computation: Practice and Experience. Concurr Comp-Pract E. 0(0), e5070

  23. Taskin, B., Chiu, A., Salkind, J., Venutolo, D.: A shift-register-based QCA memory architecture. ACM J. Emerg. Technol. Comput. Syst. 5(1), 4 (2009)

    Article  Google Scholar 

  24. Abutaleb, M.: Robust and efficient quantum-dot cellular automata synchronous counters. Microelectron. J. 61, 6–14 (2017)

    Article  Google Scholar 

  25. Afrooz, S., Navimipour, N.J.: Memory designing using quantum-dot cellular automata: systematic literature review, classification and current trends. Journal of Circuits, Systems and Computers. J. Circuit Syst Comp. 26, 1730004 (2017)

    Article  Google Scholar 

  26. Huang, J., Momenzadeh, M., Lombardi, F.: Design of sequential circuits by quantum-dot cellular automata. Microelectron. J. 38(4–5), 525–537 (2007)

    Article  Google Scholar 

  27. Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23(9), 4155–4168 (2017)

    Article  Google Scholar 

  28. Sasamal, T. N., Singh, A. K., and Ghanekar, U., An efficient single-layer crossing based 4-bit shift register using QCA, in Advanced Computing and Communication Technologies: Springer, , pp. 315–325 (2018)

  29. Purkayastha, T., De, D., Chattopadhyay, T.: Universal shift register implementation using quantum dot cellular automata. Ain Shams Eng J. 2016,

  30. Divshali, M.N., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57(11), 3326–3339 (2018)

    Article  MathSciNet  Google Scholar 

  31. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  32. Liu, W., Swartzlander, E. E. Jr, and O’Neill, M., Design of Semiconductor QCA Systems. Artech House, (2013)

  33. Srivastava, S., Probabilistic modeling of quantum-dot cellular automata, (2007)

  34. Shamsabadi, A.S., Ghahfarokhi, B.S., Zamanifar, K., Movahedinia, N.: Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J. Syst. Archit. 55(3), 180–187 (2009)

    Article  Google Scholar 

  35. Goswami, M., Kumar, B., Tibrewal, H., and Mazumdar, S., Efficient Realization of Digital Logic Circuit Using Qca Multiplexer, in 2014 2nd International Conference on Business and Information Management (ICBIM), pp. 165–170: IEEE (2014)

  36. Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014)

    Article  Google Scholar 

  37. Ahmad, F., Mustafa, M., Wani, N.A., Mir, F.A.: A novel idea of pseudo-code generator in quantum-dot cellular automata (QCA). Int. J. Simul. Multidiscip. Des. Optim. 5, A04 (2014)

    Article  Google Scholar 

  38. Reshi, J. I., Banday, M. T., and Khanday, F. A., Sequential circuit design using quantum dot cellular automata (QCA), In 2015 International conference on advances in computers, communication and electronic engineering, 1 (1): 143–148, 2015.{ISSN: 978–93-822}, (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Kornovich, R. An Optimized Design of Serial-Input-Serial-Output (SISO) and Parallel-Input-Parallel-Output (PIPO) Shift Registers Based on Quantum Dot Cellular Automata Nanotechnology. Int J Theor Phys 58, 3684–3693 (2019). https://doi.org/10.1007/s10773-019-04238-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04238-w

Keywords

Navigation