Skip to main content
Log in

Theoretical Prediction of Thermal Properties of K2 Diatomic Molecule Using Generalized Mobius Square Potential

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the present paper, thermal properties of K2 diatomic molecule were theoretically investigated. To this goal, we have used the generalized Mobius square (GMS) potential and obtained the rotational–vibrational energy levels of the GMS potential analytically. The Schrödinger equation (SE) was solved by considering a Pekeris-type approximation framework and a suitable coordinate transformation. Using the calculated energy levels, we can analytically obtain the partition function and thereby thermal properties of the K2 molecule such as mean energy, entropy, enthalpy and etc. Comparison of our results with experimental data shows a good agreement. Our results reveal that the GMS potential is a suitable candidate to predict the thermal properties of the K2 molecule. We can use the model to predict thermal properties at the temperature ranges where there are no experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GMS:

Generalized Mobius square

SE:

Schrödinger equation

NIST:

National Institute Standards and Technology

K:

Kelvin

\(T\) :

Temperature

\({k}_{\mathrm{B}}\) :

Boltzmann constant

\({r}_{\mathrm{e}}\) :

Equilibrium bond length

\({\omega }_{\mathrm{e}}\) :

Equilibrium harmonic vibrational frequency

\(c\) :

Speed of light

\(\mu\) :

Reduced mass

\({D}_{\mathrm{e}}\) :

Dissociation energy

\(H\) :

Enthalpy

\(S\) :

Entropy

\(U\) :

Mean energy

\({c}_{\mathrm{P}}\) :

Specific heat at constant pressure

\({c}_{\mathrm{V}}\) :

Specific heat at constant volume

\(F\) :

Free energy

\(P\) :

Pressure

\(V\) :

Volume

\(\boldsymbol{\hslash }\) :

Planck’s constant

\(Q\) :

Partition function

References

  1. R. Khordad, A. Ghanbari, Theoretical prediction of thermodynamic functions of TiC: Morse ring-shaped potential. J. Low Temp. Phys. 199, 1198 (2020)

    ADS  Google Scholar 

  2. M. Servatkhah, R. Khordad, A. Ghanbari, Accurate prediction of thermodynamic functions of H2 and LiH using theoretical calculations. Int. J. Thermophys. 41, 37 (2020)

    ADS  Google Scholar 

  3. M. Habibinejad, R. Khordad, A. Ghanbari, Specific heat at constant pressure, enthalpy and Gibbs free energy of boron nitride (BN) using q-deformed exponential-type potential. Physica B 613, 412940 (2021)

    Google Scholar 

  4. R. Khordad, A. Avazpour, A. Ghanbari, Exact analytical calculations of thermodynamic functions of gaseous substances. Chem. Phys. 517, 30–35 (2019)

    Google Scholar 

  5. R. Khordad, A. Ghanbari, Prediction of thermal properties of gaseous diatomic molecules CsX (X=O, F, Cl) using shifted Tietz-Wei potential. Chin. J. Phys. (2021). https://doi.org/10.1016/j.cjph.2021.04.011

    Article  Google Scholar 

  6. L. Yakub, E. Bodiul, Melting line parameters and thermodynamic properties of methane at high pressures. J. Low Temp. Phys. 187, 33–42 (2017)

    ADS  Google Scholar 

  7. G. Chanana, K. Batra, V. Prasad, Exploring response of Li2 molecule to external electric field: a DFT and SAC-CI study. Comput. Theor. Chem. 1169, 112620 (2019)

    Google Scholar 

  8. S. Boycheva, D. Zgureva, V. Vassilev, Kinetic and thermodynamic studies on the thermal behaviour of fly ash from lignite coals. Fuel 108, 639–646 (2013)

    Google Scholar 

  9. S. Dastidar, C.J. Hawley, A.D. Dillon, A.D. Gutierrez-Perez, J.E. Spanier, A.T. Fafarman, Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide. J. Phys. Chem. Lett. 8, 1278–1282 (2017)

    Google Scholar 

  10. P. Ammendola, F. Raganati, R. Chirone, CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: thermodynamics and kinetics. Chem. Eng. J. 322, 302–313 (2017)

    Google Scholar 

  11. N. Lethole, H. Chauke, P. Ngoepe, Thermodynamic stability and pressure dependence of FePO4 polymorphs. Comput. Theor. Chem. 1155, 67–74 (2019)

    Google Scholar 

  12. C.S. Jia, L.H. Zhang, C.W. Wang, Thermodynamic properties for the lithium dimer. Chem. Phys. Lett. 667, 211–215 (2017)

    ADS  Google Scholar 

  13. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.-T. You, Partition function of improved Tietz oscillators. Chem. Phys. Lett. 676, 150–153 (2017)

    ADS  Google Scholar 

  14. X.-Q. Song, C.-W. Wang, C.-S. Jia, Thermodynamic properties for the sodium dimer. Chem. Phys. Lett. 673, 50–55 (2017)

    ADS  Google Scholar 

  15. C.-S. Jia, C.-W. Wang, L.-H. Zhang, X.-L. Peng, H.-M. Tang, J.-Y. Liu, Y. Xiong, R. Zeng, Predictions of entropy for diatomic molecules and gaseous substances. Chem. Phys. Lett. 692, 57–60 (2018)

    ADS  Google Scholar 

  16. R. Khordad, A. Ghanbari, Analytical calculations of thermodynamic functions of lithium dimer using modified Tietz and Badawi–Bessis–Bessis potentials. Comput. Theor. Chem. 1155, 1–8 (2019)

    Google Scholar 

  17. A. Ghanbari, R. Khordad, Thermodynamic properties of several substances using Tietz-Hua potential. Indian J. Phys. (2021). https://doi.org/10.1007/s12648-021-02086-1

    Article  Google Scholar 

  18. X.-Y. Gu, S.-H. Dong, Energy spectrum of the Manning-Rosen potential including centrifugal term solved by exact and proper quantization rules. J. Math. Chem. 49, 2053 (2011)

    MathSciNet  MATH  Google Scholar 

  19. M.F. Manning, N. Rosen, A potential function for the vibrations of diatomic molecules. Phys. Rev. 44, 951–954 (1933)

    Google Scholar 

  20. T. Tietz, A new potential energy function for diatomic molecules. J. Phys. Soc. Jpn 18, 1647–1649 (1963)

    ADS  Google Scholar 

  21. X.-J. Xie, C.-S. Jia, Solutions of the Klein-Gordon equation with the Morse potential energy model in higher spatial dimensions. Phys. Scr. 90, 035207 (2015)

    ADS  Google Scholar 

  22. C.O. Edet, U.S. Okorie, G. Osobonye, A.N. Ikot, G.J. Rampho, R. Sever, Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach. J. Math. Chem. 58, 989–1013 (2020)

    MathSciNet  MATH  Google Scholar 

  23. O. Adebimpe, C.A. Onate, S.O. Salawu, A. Abolanriwa, A.F. Lukman, Eigen solutions, scattering phase shift and thermodynamic properties of Hulthen-Yukawa potential. Results Phys. 14, 102409 (2019)

    Google Scholar 

  24. S. Ikhdair, Rotation and vibration of diatomic molecule in the spatially-dependent mass Schrödinger equation with generalized q-deformed Morse potential. Chem. Phys. 361, 9–17 (2009)

    Google Scholar 

  25. G. Valencia-Ortega, L.A. Arias-Hernandez, Thermodynamic properties of diatomic molecule systems under SO(2, 1)-anharmonic Eckart potential. Int. J. Quantum Chem. 118, e25589 (2018)

    Google Scholar 

  26. P. Aspoukeh, S.M. Hamad, Bound state solution of the Kelin-Gordon equation for vector and scalar Hellmann plus modified Kratzer potentials. Chin. J. Phys. 68, 224 (2020)

    Google Scholar 

  27. C.-S. Jia, Y.-F. Diao, L.-Z. Yi, T. Chen, Arbitrary L-wave solutions of the Schrödinger Equation with the Hulthén Potential Model. Int. J. Mod. Phys. A 24, 4519–4528 (2009)

    MATH  ADS  Google Scholar 

  28. S. Meyur, S. Maji, S. Debnath, Analytical solution of the Schrödinger equation with spatially varying effective mass for generalised Hylleraas potential. Adv. High Energy Phys. 2014, 1 (2014)

    MATH  Google Scholar 

  29. C. Edet, P. Okoi, A. Yusuf, P. Ushie, P. Amadi, Bound state solutions of the generalized shifted Hulthen potential. Indian J. Phys. 95, 471–480 (2021)

    ADS  Google Scholar 

  30. H. Louis, B.I. Ita, N.I. Nzeata, Approximate solution of the Schrödinger equation with Manning-Rosen plus Hellmann potential and its thermodynamic properties using the proper quantization rule. Eur. Phys. J. Plus 134, 315 (2019)

    Google Scholar 

  31. C.L. Morrison, B. Shizgal, Pseudospectral solution of the Schrödinger equation for the Rosen-Morse and Eckart potentials. J. Math. Chem. 57, 1035–1052 (2019)

    MathSciNet  MATH  Google Scholar 

  32. H. Haken, H.C. Wolf, Molecular Physics and Elements of Quantum Chemistry: Introduction to Experiments and Theory (Springer, Berlin, 2013).

    MATH  Google Scholar 

  33. C. Frankenberg, J.F. Meirink, M. van Weele, U. Platt, T. Wagner, Assessing methane emissions from global space-borne observations. Science 308, 1010–1014 (2005)

    ADS  Google Scholar 

  34. G.D. Zhang, J.Y. Liu, L.H. Zhang, W. Zhou, C.S. Jia, Modified Rosen-Morse potential-energy model for diatomic molecules. Phys. Rev. A 86, 062510 (2012)

    ADS  Google Scholar 

  35. A.N. Ikot, B. Yazarloo, S. Zarrinkamar, H. Hassanabadi, Symmetry limits of (D+ 1)-dimensional Dirac equation with Möbius square potential. Eur. Phys. J. Plus 129, 79 (2014)

    Google Scholar 

  36. U. Okorie, A. Ikot, M. Ibezim-Ezeani, H.Y. Abdullah, Diatomic molecules energy spectra for the generalized Mobius square potential model. Int. J. Mod. Phys. B 34, 2050209 (2020)

    MathSciNet  MATH  ADS  Google Scholar 

  37. A.N. Ikot, E.O. Chukwuocha, M.C. Onyeaju, C.A. Onate, B.I. Ita, M.E. Udoh, Thermodynamics properties of diatomic molecules with general molecular potential. Pramana J. Phys. 90, 22 (2018)

    ADS  Google Scholar 

  38. T. Tietz, Potential-energy function for diatomic molecules. J. Chem. Phys. 38, 3036–3037 (1963)

    ADS  Google Scholar 

  39. C.-S. Jia, Y.-F. Diao, X.-J. Liu, P.-Q. Wang, J.-Y. Liu, G.-D. Zhang, Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. J. Chem. Phys. 137, 014101 (2012)

    ADS  Google Scholar 

  40. A.T. Royappa, V. Suri, J.R. McDonough, Comparison of empirical closed-form functions for fitting diatomic interaction potentials of ground state first- and second-row diatomics. J. Mol. Struct. 787, 209–215 (2006)

    ADS  Google Scholar 

  41. P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57 (1929)

    MATH  ADS  Google Scholar 

  42. N. Rosen, P.M. Morse, On the vibrations of polyatomic molecules. Phys. Rev. 42, 210 (1932)

    MATH  ADS  Google Scholar 

  43. F.J. Gordillo-Vazquez, J.A. Kunc, High-accuracy expressions for rotational–vibrational energies of O2, N2, NO, and CO molecules. J. Thermophys. Heat Transf. 12, 52–56 (1998)

    Google Scholar 

  44. C. Pekeris, The rotation–vibration coupling in diatomic molecules. Phys. Rev. 45, 98 (1934)

    MATH  ADS  Google Scholar 

  45. M. Strekalov, An accurate closed-form expression for the partition function of Morse oscillators. Chem. Phys. Lett. 439, 209–212 (2007)

    ADS  Google Scholar 

  46. L. Li, A. Lyyra, W. Luh, W. Stwalley, Observation of the 39K2 a 3Σ+ u state by perturbation facilitated optical–optical double resonance resolved fluorescence spectroscopy. J. Chem. Phys. 93, 8452–8463 (1990)

    ADS  Google Scholar 

  47. P. Linstorm, NIST chemistry webbook, NIST standard reference database number 69. J. Phys. Chem. Ref. Data Monogr. Suppl. 9, 1–1951 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We cannot obtain exact analytical relation for the energy levels due to the centrifugal potential \({U}_{\mathrm{cp}}\left(r\right)=\frac{l\left(l+1\right){\hbar }^{2}}{2\mu {r}^{2}}\) in Eq. 11. For this reason, we use a coordinate transformation z \(=\frac{r-{r}_{\mathrm{e}}}{{r}_{\mathrm{e}}}\)

$${U}_{\mathrm{cp}}\left(r\right)=\frac{l\left(l+1\right){\hbar }^{2}}{2\mu {r}^{2}}=\frac{l\left(l+1\right){\hbar }^{2}}{2\mu {r}_{\mathrm{e}}^{2}}\frac{1}{{\left(1+z\right)}^{2}}=\frac{l\left(l+1\right){\hbar }^{2}}{2\mu {r}_{\mathrm{e}}^{2}}\left(1-2z+3{z}^{2}+\cdots \right),$$
$$=\frac{l\left(l+1\right){\hbar }^{2}}{2\mu {r}_{\mathrm{e}}^{2}}\left({q}_{0}+\frac{{q}_{1}}{+{\mathrm{e}}^{\alpha r}}+\frac{{q}_{2}}{{\left(+{\mathrm{e}}^{\alpha r}\right)}^{2}}\right),$$
(20)

where the coefficients \({q}_{0}\), \({q}_{1}\) and \({q}_{2}\) are defined as [44]

$${q}_{0}=1+\frac{1}{{\alpha }^{2}{r}_{\mathrm{e}}^{2}}\left(3-3\alpha {r}_{\mathrm{e}}+6\eta{\mathrm{e}}^{-\alpha {r}_{\mathrm{e}}}+3\eta^{2}{\mathrm{e}}^{-2\eta\alpha {r}_{\mathrm{e}}}-2\eta\alpha {r}_{\mathrm{e}}{e}^{-\alpha {r}_{\mathrm{e}}}+\eta^{2}\alpha {r}_{\mathrm{e}}{\mathrm{e}}^{-2\alpha {r}_{\mathrm{e}}}\right),$$
(21)
$${q}_{1}=\frac{2}{{\alpha }^{2}{r}_{\mathrm{e}}^{2}}\left(-9\eta+3\eta\alpha {r}_{\mathrm{e}}-3{\mathrm{e}}^{\alpha {r}_{\mathrm{e}}}+2\alpha {r}_{\mathrm{e}}{\mathrm{e}}^{\alpha {r}_{\mathrm{e}}}-9\eta^{2}{\mathrm{e}}^{-\alpha {r}_{\mathrm{e}}}-3\eta^{3}{\mathrm{e}}^{-2\alpha {r}_{\mathrm{e}}}-\eta^{3}\alpha {r}_{\mathrm{e}}{\mathrm{e}}^{-2\alpha {r}_{\mathrm{e}}}\right),$$
(22)
$${q}_{2}=\frac{1}{{\alpha }^{2}{r}_{\mathrm{e}}^{2}}\left(18\eta^{2}+12\eta{\mathrm{e}}^{\alpha {r}_{\mathrm{e}}}+3{\mathrm{e}}^{2\alpha {r}_{\mathrm{e}}}-2\eta\alpha {r}_{\mathrm{e}}{\mathrm{e}}^{\alpha {r}_{\mathrm{e}}}-\alpha {r}_{\mathrm{e}}{\mathrm{e}}^{2\alpha {r}_{\mathrm{e}}}+12\eta^{3}{\mathrm{e}}^{-\alpha {r}_{\mathrm{e}}}+3\eta^{4}{\mathrm{e}}^{-2\alpha {r}_{\mathrm{e}}}+2\eta^{3}\alpha {r}_{\mathrm{e}}{\mathrm{e}}^{-\alpha {r}_{\mathrm{e}}}+\eta^{4}\alpha {r}_{\mathrm{e}}{\mathrm{e}}^{-2\alpha {r}_{\mathrm{e}}}\right).$$
(23)

Inserting Eq. 20 into Eq. 11 and using a transformation \(S={\mathrm{e}}^{-\alpha {r}_{\mathrm{e}}}\), the SE can be written as

$${S}^{2}\frac{{\mathrm{d}}^{2}{R}_{nl}\left(S\right)}{\mathrm{d}{S}^{2}}+S\frac{\mathrm{d}{R}_{nl}\left(S\right)}{\mathrm{d}S}+\left(-{\varepsilon }_{nl}-\frac{G}{\eta-S}+\frac{H}{{\left(\eta-S\right)}^{2}}\right){R}_{nl}\left(S\right)=0,$$
(24)

where

$$-{\varepsilon }_{nl}=\frac{1}{{\hbar }^{2}{\alpha }^{2}}\left(2\mu {E}_{nl}-2\mu {D}_{\mathrm{e}}-\frac{l\left(l+1\right){\hbar }^{2}}{{r}_{\mathrm{e}}^{2}}{q}_{0}\right),$$
(25)
$$G=\frac{l\left(l+1\right){q}_{1}}{{\alpha }^{2}{r}_{\mathrm{e}}^{2}}-\frac{4\mu {D}_{\mathrm{e}}}{{\hbar }^{2}{\alpha }^{2}}\left(+{\mathrm{e}}^{\alpha {r}_{\mathrm{e}}}\right),$$
(26)
$$H=\frac{2\mu {D}_{\mathrm{e}}}{{\hbar }^{2}{\alpha }^{2}}{\left(\eta+{\mathrm{e}}^{\alpha {r}_{\mathrm{e}}}\right)}^{2}+\frac{l\left(l+1\right){q}_{2}}{{\alpha }^{2}{r}_{\mathrm{e}}^{2}}.$$
(27)

To solve Eq. 22, we apply the following relation

$${R}_{nl}\left(S\right)={S}^{\xi }{\left(\eta-S\right)}^{\delta }{F}_{nl}\left(S\right),$$
(28)

where

$$\xi =\pm \sqrt{{\varepsilon }_{nl}+\frac{G}{\eta}+\frac{H}{{\eta}^{2}}}; \quad\delta =\frac{1}{2}\left(1\pm \sqrt{1+\frac{4H}{{\eta}^{2}}}\right).$$
(29)

Inserting Eq. 26 into Eq. 22, we obtain

$$S\left(\eta-S\right)\frac{{\mathrm{d}}^{2}{F}_{nl}\left(S\right)}{\mathrm{d}{S}^{2}}+\left[\eta\left(1+2\xi \right)-S\left(1+2\xi +2\delta \right)\right]\frac{\mathrm{d}{F}_{nl}\left(S\right)}{\mathrm{d}S}-\left[\left(\xi +\delta -\sqrt{{\varepsilon }_{nl}}\right)\left(\xi +\delta +\sqrt{{\varepsilon }_{nl}}\right)\right]{F}_{nl}\left(S\right)=0.$$
(30)

According to above relation, we define the following parameters

$$a\equiv \xi +\delta -\sqrt{{\varepsilon }_{nl}}, \quad b\equiv \xi +\delta +\sqrt{{\varepsilon }_{nl}},\quad c\equiv \eta\left(1+2\xi \right).$$
(31)

The hypergeometric function becomes a polynomial of a certain degree when either \(a\) or \(b\) is equal to a negative integer (\(-n\)).

$$a=-n\quad n=0, 1, 2, 3, \ldots , {n}_{\mathrm{max}}.$$
(32)

Using Eqs. 23 to 25 and 27 and 29, we can obtain the energy levels as

$${E}_{nl}={D}_{\mathrm{e}}+\zeta {q}_{0}-\frac{{\hbar }^{2}{\alpha }^{2}}{2\mu }\left[\frac{2n+1\pm \sqrt{1+\frac{8\mu {D}_{\mathrm{e}}}{{\hbar }^{2}{\alpha }^{2}{\eta}^{2}}\left[{\left(\eta{+\mathrm{e}}^{\alpha {r}_{\mathrm{e}}}\right)}^{2}+\zeta {q}_{2}\right]}}{4}-\frac{\frac{2\mu }{{\hbar }^{2}{\alpha }^{2}{\eta}^{2}}\left[{D}_{\mathrm{e}}\left({\mathrm{e}}^{2\alpha {r}_{\mathrm{e}}}-{\eta}^{2}\right)+\zeta {q}_{2}+\zeta {q}_{1}\eta\right]}{2n+1\pm \sqrt{1+\frac{8\mu {D}_{\mathrm{e}}}{{\hbar }^{2}{\alpha }^{2}{\eta}^{2}}\left[{\left(\eta{+\mathrm{e}}^{\alpha {r}_{\mathrm{e}}}\right)}^{2}+\zeta {q}_{2}\right]}}\right]$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R., Ghanbari, A. Theoretical Prediction of Thermal Properties of K2 Diatomic Molecule Using Generalized Mobius Square Potential. Int J Thermophys 42, 115 (2021). https://doi.org/10.1007/s10765-021-02865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02865-2

Keywords

Navigation