Skip to main content
Log in

Thermal Conductivity of Pyroclastic Soil (Pozzolana) from the Environs of Rome

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The paper reveals the experimental procedure and thermo-physical characteristics of a coarse pyroclastic soil (Pozzolana), from the neighborhoods of Rome, Italy. The tested samples are comprised of 70.7 % sand, 25.9 % silt, and 3.4 % clay. Their mineral composition contained 38 % pyroxene, 33 % analcime, 20 % leucite, 6 % illite/muscovite, 3 % magnetite, and no quartz content was noted. The effective thermal conductivity of minerals was assessed to be about \(2.14\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\). A transient thermal probe method was applied to measure the thermal conductivity (\(\lambda \)) over a full range of the degree of saturation \((S_{\mathrm{r}})\), at two porosities (n) of 0.44 and 0.50, and at room temperature of about \(25\,^{\circ }\hbox {C}\). The \(\lambda \) data obtained were consistent between tests and showed an increasing trend with increasing \(S_{\mathrm{r}}\) and decreasing n. At full saturation (\(S_{\mathrm{r}}=1\)), a nearly quintuple \(\lambda \) increase was observed with respect to full dryness (\(S_{\mathrm{r}}=0\)). In general, the measured data closely followed the natural trend of \(\lambda \) versus \(S_{\mathrm{r}}\) exhibited by published data at room temperature for other unsaturated soils and sands. The measured \(\lambda \) data had an average root-mean-squared error (RMSE) of \(0.007\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) and \(0.008\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) for n of 0.50 and 0.44, respectively, as well as an average relative standard deviation of the mean at the 95 % confidence level \((\hbox {RSDM}_{0.95})\) of 2.21 % and 2.72  % for n of 0.50 and 0.44, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.R. Tarnawski, T. Momose, W.H. Leong, G. Bovesecchi, P. Coppa, Int. J. Thermophys. 30, 949 (2009)

    Article  ADS  Google Scholar 

  2. E. Cattoni, M. Cecconi, V. Pane, Bull. Eng. Geol. Environ. 66, 403 (2007)

  3. P. De Vita, A. C. Angrisani, E. Di Clemente, Ital. J. Eng. Geol. Environ. 2, 5 (2008)

  4. M. Cecconi, M. Scaparazzi, G.M.B. Viggiani, Bull. Eng. Geol Environ. 69, 185 (2010)

  5. G. Bovesecchi, P. Coppa, Int. J. Thermophys. 34, 1962 (2013)

    Article  ADS  Google Scholar 

  6. S. Sanchez-Moral, L. Luque, J.-C. Canaveras, V. Soler, J. Garciaguinea, A. Aparicio, Lime Pozzolana mortars in Roman Catacombs: composition, structures and restoration. Cem. Concr. Res. 35, 1555 (2005)

    Article  Google Scholar 

  7. P.H. Cochran, L. Boersma, C.T. Youngberg, Thermal properties of a pumice soil. SSSAJ 31, 454 (1967)

    Article  Google Scholar 

  8. E. Ashworth, The variation of the thermal conductivity of tuff with moisture. experimental results and proposed model. in Proceedings of 33rd U.S. Symposium on Rock Mechanics, ed. by J.R. Tillerson, W.R. Wawersik. Santa Fe, New Mexico (1992)

  9. Y. Yamazaki, F. Tsuchiya, O. Tsuji, Trans. JSIRRE 226, 497 (2003)

    Google Scholar 

  10. J. Schönenberger, T. Momose, B. Wagner, W.H. Leong, V. R. Tarnawski, Int. J. Thermophys. 33, 342 (2012)

  11. Ki-iti Horai, Thermal conductivity of rock forming minerals. J. Geophys. Res. 76, 1278–1308 (1971)

    Article  ADS  Google Scholar 

  12. F. Brigaud, G. Vasseur, Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys. J. 98, 525–542 (1989)

    Article  ADS  Google Scholar 

  13. C. Clauser, E. Huenges, Thermal conductivity of rocks and minerals, in Rock Physics and Phase Relations: A Handbook of Physical Constants, American Geophysical Union, vol. 3, ed. by T.J. Ahrens (American Geophysical Union, Washington, DC, 1995), p. 105

    Google Scholar 

  14. O. Johansen, Thermal conductivity of soils. Ph.D. thesis, Trondheim, Norway 1975. (CRREL Draft Translation 637, 1977). ADA 044002

  15. B.R. Blake, K.H. Hartge, Particle density, in ASA Monograph No 9, Part 1, ed. by A. Klute (1906)

  16. V.R. Tarnawski, M. L. McCombie, T. Momose, I. Sakaguchi, W.H. Leong, Int. J. Thermophys. 34, 1130 (2013)

  17. V.R. Tarnawski, T. Momose, W.H. Leong, Int. J. Thermophys. 32, 984 (2011)

    Article  ADS  Google Scholar 

  18. L. Kirkup, R.B. Frenkel, An Introduction to Uncertainty in Measurement Using the GUM Guide to the Uncertainty in Measurement (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  19. D.A. De Vries, in Thermal Properties of Soils, ed. by W.R. van Wijk (North-Holland, Amsterdam, 1963)

  20. F. Gori, On the theoretical prediction of the effective thermal conductivity of bricks. in Proceedings of the 8th International Heat Transfer Conference, II (1986)

  21. S. Lu, T. Ren, Y. Gong, R. Horton, An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. 71, 8 (2007)

    Article  Google Scholar 

  22. V. Tarnawski, T. Momose, W. H. Leong, B.Wagner, Performance evaluation of soil thermal conductivity models, in Proceedings of ASME-ATI-UIT Conference on Thermal and Environmental Issues in Energy Systems, Sorrento, Italy (2010)

  23. V.R. Tarnawski, F. Gori, Int. J. Energy Res. 26, 143 (2002)

    Article  Google Scholar 

  24. F. Gori, S. Corasaniti, Detection of a dry-frozen boundary inside Martian regolith. Planet. Space Sci. 56, 1093 (2008)

    Article  ADS  Google Scholar 

  25. F. Gori, S. Corasaniti, New model to evaluate the effective thermal conductivity of three-phase soils. Int. Commun. Heat Mass Transf. 47, 1 (2013)

    Article  Google Scholar 

  26. F. Gori, S. Corasaniti, Effective thermal conductivity of three-phase soils. in Proceedings of The ASME International Mechanical Engineering Congress and Exposition 2012, Fluid and Heat Transfer, Houston, Texas, USA, vol 7 Part D, p. 2369 (2012)

Download references

Acknowledgements

The authors wish to express sincere gratitude to Bavarian Environment Agency (Hoff, Germany), for conducting XRD/XRF analyses. Additionally, sincere thanks are due to Prof. G. Viggiani and M. Scaparazzi for their assistance in collecting Pozzolana samples. Finally, the authors would like to thank Mr. Owen Brown from Bedford Institute of Oceanography (Canada) for carrying out the textural analysis of the tested Pozzolana sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Tarnawski.

Appendix: \({\varDelta } T\) Versus ln(t) Trend for Tested Pozzolana Samples

Appendix: \({\varDelta } T\) Versus ln(t) Trend for Tested Pozzolana Samples

See Fig. 6.

Fig. 6
figure 6

\({\varDelta } T\) versus ln(t) for Pozzolana at \(S_{\mathrm{r}}=0.5\) and \(n=0.44\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCombie, M.L., Tarnawski, V.R., Bovesecchi, G. et al. Thermal Conductivity of Pyroclastic Soil (Pozzolana) from the Environs of Rome. Int J Thermophys 38, 21 (2017). https://doi.org/10.1007/s10765-016-2161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2161-y

Keywords

Navigation