Skip to main content
Log in

Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \(\upmu \)m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO\(_{2}\) or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.A. Wakeham, A. Nagashima, J.V. Sengers (eds.), Experimental Thermodynamics. Vol. III. Measurement of the Transport Properties of Fluids (Blackwell Scientific Publications, London, 1991)

    Google Scholar 

  2. M.J. Assael, K.D. Antoniadis, W.A. Wakeham, Int. J. Thermophys. 31, 1051 (2010)

    Article  ADS  Google Scholar 

  3. J.T. Wu, M.J. Assael, K.D. Antoniadis, Chapter 5.1. History of the Transient Hot Wire, in Experimental Thermodynamics Volume IX: Advances in Transport Properties of Fluids, ed. by M.J. Assael, A.R.H. Goodwin, V. Vesovic, W.A. Wakeham (RSC Press, London, 2014), pp. 132–138

    Chapter  Google Scholar 

  4. E.B. Haghighi, M. Saleemi, N. Nikkam, R. Khodabandeh, M.S. Toprak, M. Muhammed, B. Palm, Int. Commun. Heat Mass Transf. 52, 1 (2014)

    Article  Google Scholar 

  5. A. Kazemi-Beydokhti, S.Z. Heris, N. Moghadam, M. Shariati-Niasar, A.A. Hamidi, Chem. Eng. Commun. 201, 593 (2014)

    Article  Google Scholar 

  6. M.C.S. Reddy, V.V. Rao, Int. Commun. Heat Mass Transf. 46, 31 (2013)

    Article  Google Scholar 

  7. L. Fedele, L. Colla, S. Bobbo, Int. J. Refrig. 35, 1359 (2012)

    Article  Google Scholar 

  8. T. Yiamsawasd, A.S. Dalkilic, S. Wongwises, Thermochim. Acta 545, 48 (2012)

    Article  Google Scholar 

  9. W. Qu, J. Feng, Method Comparison and Measurement Accuracy of Thermal Conductivity for Several Nanofluids in 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2010)

  10. W. Duangthongsuk, S. Wongwises, Exp. Therm. Fluid Sci. 33, 706 (2009)

    Article  Google Scholar 

  11. A. Turgut, I. Tavman, M. Chirtoc, H.P. Schuchmann, C. Sauter, S. Tavman, Int. J. Thermophys. 30, 1213 (2009)

    Article  Google Scholar 

  12. Z.L. Wang, D.W. Tang, S. Liu, X.H. Zheng, N. Araki, Int. J. Thermophys. 28, 1255 (2007)

    Article  ADS  Google Scholar 

  13. D.H. Yoo, K.S. Hong, H.S. Yang, Thermochim. Acta 455, 66 (2007)

    Article  Google Scholar 

  14. X. Zhang, H. Gu, M. Fujii, Int. J. Thermophys. 27, 569 (2006)

    Article  ADS  Google Scholar 

  15. D. Wen, Y. Ding, J. Thermophys. Heat Transf. 18, 481 (2004)

    Article  Google Scholar 

  16. S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 44, 367 (2005)

    Article  Google Scholar 

  17. B.C. Pak, Y.I. Cho, Exp. Heat Transf. 11, 151 (1998)

    Article  ADS  Google Scholar 

  18. R.L. Hamilton, O.K. Crosser, I&EC Fundam. 1, 187 (1962)

    Article  Google Scholar 

  19. G. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 36, 1367 (2015)

    Article  ADS  Google Scholar 

  20. P. Estellé, S. Halelfadl, T. Maré, J. Therm. Eng. 1, 381 (2015)

    Article  Google Scholar 

  21. R. Sadri, G. Ahmadi, H. Togun, M. Dahari, S.N. Kazi, E. Sadeghinezhad, N. Zubir, Nanoscale Res. Lett. 9, 151 (2014)

    Article  ADS  Google Scholar 

  22. D. Madhesh, S. Kalaiselvam, Int. J. Adv. Mech. Eng. 4, 193 (2014)

    Google Scholar 

  23. B. Gu, B. Hou, Z. Lu, Z. Wanga, S. Chen, Int. J. Heat Mass Transf. 64, 108 (2013)

    Article  Google Scholar 

  24. A. Indhuja, K.E. Suganthi, E. Manikandan, K.E. Rajan, J. Taiwan Inst. Chem. Eng. 44, 474 (2013)

    Article  Google Scholar 

  25. B. Ruan, A.M. Jacobi, Int. J. Heat Mass Transf. 55, 3186 (2012)

    Article  Google Scholar 

  26. R. Walvekar, I.A. Faris, M. Khalid, Heat Transf. Asian Res. 41, 145 (2012)

    Article  Google Scholar 

  27. A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, R. Khodafarin, Int. J. Heat Mass Transf. 55, 1529 (2012)

    Article  Google Scholar 

  28. T.X. Phuoc, M. Massoudi, R.H. Chen, Int. J. Therm. Sci. 50, 12 (2011)

    Article  Google Scholar 

  29. S.S.J. Aravind, P. Baskar, T.T. Baby, R.K. Sabareesh, S. Das, S. Ramaprabhu, J. Phys. Chem. 115, 16737 (2011)

    Google Scholar 

  30. H. Xie, W. Yu, Y. Li, C. Chen, Nanoscale Res. Lett. 6, 124 (2011)

    Article  ADS  Google Scholar 

  31. J. Ponmozhi, F.A.M.M. Gonçalves, A.G.M. Ferreira, I.M.A. Fonseca, S. Kanagaraj, N. Martins, M.S.A. Oliveira, J. Nano Res. 11, 101 (2010)

    Article  Google Scholar 

  32. A.S. Cherkasova, J.W. Shan, J. Heat Transf. 132, 082402 (2010)

    Article  Google Scholar 

  33. P. Garg, J.L. Alvarado, C. Marsh, T.A. Carlson, D.A. Kessler, K. Annamalai, Int. J. Heat Mass Transf. 52, 5090 (2009)

    Article  Google Scholar 

  34. M.N. Pantzali, A.A. Mouza, S.V. Paras, Chem. Eng. Sci. 64, 3290 (2009)

    Article  Google Scholar 

  35. L. Chen, H. Xie, Y. Li, W. Yu, Thermochim. Acta 477, 21 (2008)

    Article  Google Scholar 

  36. J. Glory, M. Bonetti, M. Helezen, M. Mayne-L’Hermite, C. Reynaud, J. Appl. Phys. 103, 094309 (2008)

    Article  ADS  Google Scholar 

  37. S. Jana, A. Salehi-Khojin, W.-H. Zhong, Thermochim. Acta 462, 45 (2007)

    Article  Google Scholar 

  38. Y. Hwang, I.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee, B.C. Ku, S.P. Jang, Thermochim. Acta 455, 70 (2007)

    Article  Google Scholar 

  39. X. Zhang, H. Gu, M. Fujii, J. Appl. Phys. 100, 044325 (2006)

    Article  ADS  Google Scholar 

  40. Y. Ding, H. Alias, D. Wen, R.A. Williams, Int. J. Heat Mass Transf. 49, 240 (2006)

    Article  Google Scholar 

  41. Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim, H.S. Park, J.K. Lee, Curr. Appl. Phys. 6, 1068 (2006)

    Article  ADS  Google Scholar 

  42. M.J. Assael, I.N. Metaxa, J. Arvanitidis, D. Christofilos, C. Lioutas, Int. J. Thermophys. 26, 647 (2005)

    Article  ADS  Google Scholar 

  43. M.J. Assael, C.-F. Chen, I.N. Metaxa, W.A. Wakeham, Int. J. Thermophys. 25, 971 (2004)

    Article  ADS  Google Scholar 

  44. H. Xie, H. Lee, W. Youn, M. Choib, J. Appl. Phys. 94, 4967 (2003)

    Article  ADS  Google Scholar 

  45. M.J. Assael, M. Dix, K. Gialou, L. Vozar, W.A. Wakeham, Int. J. Thermophys. 23, 615 (2002)

    Article  Google Scholar 

  46. M.J. Assael, K. Gialou, Int. J. Thermophys. 24, 667 (2003)

    Article  Google Scholar 

  47. M.J. Assael, K.D. Antoniadis, K.E. Kakosimos, Int. J. Thermophys. 29, 445 (2008)

    Article  ADS  Google Scholar 

  48. K. Healy, J.J. de Groot, J. Kestin, Physica 82C, 392 (1976)

    Google Scholar 

  49. E. Charitidou, M. Dix, M.J. Assael, C.A. Nieto de Castro, W.A. Wakeham, Int. J. Thermophys. 8, 511 (1987)

    Article  ADS  Google Scholar 

  50. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959)

    MATH  Google Scholar 

  51. J. Kestin, W.A. Wakeham, Physica 92A, 102 (1978)

    Article  ADS  Google Scholar 

  52. Y. Nagasaka, A. Nagashima, J. Phys. E 14, 1435 (1981)

    Article  ADS  Google Scholar 

  53. A. Alloush, W.B. Gosney, W.A. Wakeham, Int. J. Thermophys. 3, 225 (1982)

    Article  ADS  Google Scholar 

  54. D. Wen, Y. Ding, I.E.E.E. Trans, Nanotechnology 5, 220 (2006)

    Google Scholar 

  55. J. Bilek, J. Atkinson, W.A. Wakeham, in 11th Electronic Devices and Systems Conference, Brno, 9–11 Sept 2004

  56. J. Bilek, Ph.D. thesis, University of Southampton, Southampton, 2006

  57. M.J. Assael, E. Karagiannidis, W.A. Wakeham, Int. J. Thermophys. 13, 735 (1992)

    Article  ADS  Google Scholar 

  58. J.J. de Groot, J. Kestin, H. Sookiazian, Physica 75, 454 (1974)

    Article  ADS  Google Scholar 

  59. Joint Committee for Guides in Metrology, Evaluation of measurement data—guide to the expression of uncertainty in measurement (GUM). (2008)

  60. M.L. Huber, R.A. Perkins, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, K. Miyagawa, R. Hellmann, E. Vogel, J. Phys. Chem. Ref. Data 41, 033102 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. Assael.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoniadis, K.D., Tertsinidou, G.J., Assael, M.J. et al. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied. Int J Thermophys 37, 78 (2016). https://doi.org/10.1007/s10765-016-2083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2083-8

Keywords

Navigation