Skip to main content
Log in

The Apparent Thermal Conductivity of Liquids Containing Solid Particles of Nanometer Dimensions: A Critique

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

A Commentary to this article was published on 29 August 2016

Abstract

There have been conflicting statements in the literature of the last twenty years about the behavior of the apparent thermal conductivity of two- or three-phase systems comprising solid particles with nanometer dimensions suspended in fluids. It has been a feature of much of the work that these multiphase systems have been treated as if a single-phase fluid and that the thermodynamic characteristics of the system have varied even though the systems have been given the same name. These so-called nanofluids have been the subject of a large number of investigations by a variety of different experimental techniques. In the current paper, we critically evaluate the studies of seven of the simplest particulate/fluid systems: Cu, CuO, \(\hbox {Al}_{2}\hbox {O}_{3}\), and \(\hbox {TiO}_{2}\) suspended in water and ethylene glycol. Our conclusion is that when results for exactly the same thermodynamic system are obtained with proven experimental techniques, the apparent thermal conductivity of the nanofluid exhibits no behavior that is unexpected and inconsistent with a simple model of conduction in stationary, multiphase systems. The wider variety of behavior that has been reported in the literature for these systems is therefore attributed to ill-characterization of the thermodynamic system and/or the application of experimental techniques of unproven validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.U.S. Choi, J.A. Eastman, Presented at ASME Congress, San Francisco (1995)

  2. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  3. G. Tertsinidou, I.N. Metaxa, E.K. Mihailidou, M.J. Assael, W.A. Wakeham, Is it Possible to Predict Theoretically the Thermal Conductivity Enhancement in Nanofluids? Presented at 20th European Conference on Thermophysical Properties, Porto, Portugal (2014)

  4. R.L. Hamilton, O.K. Crosser, I&EC Fundam. 1, 187 (1962)

    Article  Google Scholar 

  5. S.M.S. Murshed, C.A. Nieto de Castro, Nanofluids. Synthesis, Properties and Applications (Nova Publishers, New York, 2014)

    Google Scholar 

  6. Experimental Thermodynamics, vol. III, Measurement of the Transport Properties of Fluids, ed. by A. Nagashima, J.V. Sengers, W.A. Wakeham (Blackwell Scientific Publications, New York, 1991)

  7. Experimental Thermodynamics, vol. IX, Advances in Transport Properties of Fluids, ed. by M.J. Assael, A.R.H. Goodwin, V. Vesovic, W.A. Wakeham (RSC Press, London, 2014)

  8. M. Saterlie, H. Sahin, B. Kavlicoglu, Y. Liu, O. Graeve, Nanoscale Res. Lett. 6, 217 (2011)

    Article  ADS  Google Scholar 

  9. H.E. Patel, T. Sundararajan, S.K. Das, J. Nanopart. Res. 12, 1015 (2010)

    Article  ADS  Google Scholar 

  10. M. Kostic, K.C. Simham, in Proceedings of 6th WSEAS International Conference on Heat and Mass Transfer, Ningbo, China (2009), p. 71

  11. X.F. Li, D.S. Zhua, X.J. Wang, N. Wanga, J.W. Gaoa, H. Lia, Thermochim. Acta 469, 98 (2008)

    Article  Google Scholar 

  12. M. Liu, M.C. Lin, C.Y. Tsai, C. Wang, Int. J. Heat Mass Transf. 49, 3028 (2006)

    Article  Google Scholar 

  13. Y. Xuan, Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000)

    Article  Google Scholar 

  14. W. Yu, H. Xie, L. Chen, Y. Li, Powder Technol. 197, 218 (2010)

    Article  Google Scholar 

  15. J. Garg, B. Poudel, M. Chiesa, J.B. Gordon, J.J. Ma, J.B. Wang, Z.F. Ren, Y.T. Kang, H. Ohtani, J. Nanda, G.H. McKinley, G. Chen, J. Appl. Phys. 103, 074301 (2008)

    Article  ADS  Google Scholar 

  16. M.J. Assael, C. Chen, I.N. Metaxa, W.A. Wakeham, Therm. Expans. 15, 153 (2004)

    Google Scholar 

  17. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  18. M.J. Assael, E. Charitidou, G.P. Georgiades, W.A. Wakeham, Ber. Bunsenges. Phys. Chem. 92, 627 (1988)

    Article  Google Scholar 

  19. M.J. Assael, C.A. Nieto de Castro, H.M. Roder, W.A. Wakeham, in Experimental Thermodynamics, vol. III, Measurement of the Transport Properties of Fluids, ed. by A. Nagashima, J.V. Sengers, W.A. Wakeham (Blackwell Scientific Publications, New York, 1991)

  20. J.J. Healy, J.J. deGroot, J. Kestin, Physica 82C, 82C (1976)

    Google Scholar 

  21. Y. Nagasaka, A. Nagashima, J. Phys. E Sci. Instrum. 14, 1435 (1981)

    Article  ADS  Google Scholar 

  22. B. Barbes, R. Paramo, E. Blanco, C. Casanova, J. Therm. Anal. Calorim. 115, 1883–1891 (2014)

  23. A. Kazemi-Beydokhti, S.Z. Heris, N. Moghadam, M. Shariati-Niasar, A.A. Hamidi, Chem. Eng. Commun. 201, 593 (2014)

    Article  Google Scholar 

  24. S. Ponmani, J.K.M. William, R. Samuel, R. Nagarajan, J.S. Sangwai, Colloids Surf. A Physicochem. Eng. Asp. 443, 37 (2014)

    Article  Google Scholar 

  25. R. Karthik, R.H. Nagarajan, B. Raja, P. Damodharan, Exp. Therm. Fluid Sci. 40, 1 (2012)

    Article  Google Scholar 

  26. G. Colangelo, E. Favale, A. Risi, D. Laforgia, Appl. Energy 97, 828 (2012)

    Article  Google Scholar 

  27. H. Zhu, D. Han, Z. Meng, D. Wu, C. Zhang, Nanoscale Res. Lett. 6, 181 (2011)

    Article  ADS  Google Scholar 

  28. W. Qu, J. Feng, in Proceedings of 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China (2010), p. 492

  29. J.R.V. Peñas, J.M.O. Zárate, M. Khayet, J. Appl. Phys. 104, 044314 (2008)

    Article  ADS  Google Scholar 

  30. C.H. Li, G.P. Peterson, J. Appl. Phys. 99, 84314 (2006)

    Article  Google Scholar 

  31. X. Zhang, H. Gu, M. Fujii, Int. J. Thermophys. 27, 569 (2006)

    Article  ADS  Google Scholar 

  32. C.S. Jwo, T.P. Teng, C.J. Hung, Y.T. Guo, J. Phys. Conf. Ser. 13, 55 (2005)

    Article  ADS  Google Scholar 

  33. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transf. 125, 567 (2003)

    Article  Google Scholar 

  34. N. Putra, W. Roetzel, S.K. Das, Heat Mass Transf. 39, 775 (2003)

    Article  ADS  Google Scholar 

  35. S. Lee, S.U.-S. Choi, S. Li, J.A. Eastman, J. Heat Transf. 121, 280 (1999)

  36. X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999)

    Article  Google Scholar 

  37. M. Liu, M.C. Lin, I. Huang, C. Wang, Chem. Eng. Technol. 29, 72 (2006)

    Article  Google Scholar 

  38. K. Kwak, C. Kim, Korea-Aust. Rheol. J. 17, 35 (2005)

    Google Scholar 

  39. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990)

    Article  ADS  Google Scholar 

  40. S.A. Angayarkanni, J. John Philip, J. Phys. Chem. 117, 9009 (2013)

    Google Scholar 

  41. Z. Said, M.H. Sajida, M.A. Alima, R. Saidur, N.A. Rahimb, Int. Commun. Heat Mass Transf. 48, 99 (2013)

    Article  Google Scholar 

  42. B. Barbes, R. Paramo, E. Blanco, M.J. Pastoriza-Gallego, M.M. Pineiro, J.L. Legido, C. Casanova, J. Therm. Anal. Calorim. 111, 1615 (2013)

    Article  Google Scholar 

  43. X. Feng, D.W. Johnson, J. Nanopart. Res. 15, 1718 (2013)

    Article  ADS  Google Scholar 

  44. T. Yiamsawasd, A.S. Dalkilic, S. Wongwises, Thermochim. Acta 545, 48 (2012)

    Article  Google Scholar 

  45. G.A. Longo, C. Zilio, Exp. Therm. Fluid Sci. 35, 1313 (2011)

    Article  Google Scholar 

  46. I. Tavman, A. Turgut, Microfluidics Based Microsystems: Fundamentals and Applications (Springer, New York, 2010), p. 139

    Book  Google Scholar 

  47. H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, Int. J. Therm. Sci. 48, 363 (2009)

    Article  Google Scholar 

  48. S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 47, 560 (2008)

    Article  Google Scholar 

  49. D.W. Oh, A. Jain, J.K. Eaton, K.E. Goodson, J.S. Lee, Int. J. Heat Fluid Flow 29, 1456 (2008)

    Article  Google Scholar 

  50. J.H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, C.J. Choi, Int. J. Heat Mass Transf. 51, 2651 (2008)

    Article  Google Scholar 

  51. E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, Phys. Rev. E 76, 061203 (2007)

    Article  ADS  Google Scholar 

  52. D.H. Yoo, K.S. Hong, H.S. Yang, Thermochim. Acta 455, 66 (2007)

    Article  Google Scholar 

  53. C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi, Appl. Phys. Lett. 87, 153107 (2005)

    Article  ADS  Google Scholar 

  54. D. Wen, Y. Ding, Int. J. Heat Mass Transf. 47, 5181 (2004)

    Article  Google Scholar 

  55. J.A. Eastman, U.S. Choi, S. Li, L.J. Thomson, S. Lee, Mater. Res. Soc. Symp. Proc. 457, 3 (1997)

  56. G.A. Longo, C. Zilio, Int. J. Thermophys. 34, 1288 (2013)

    Article  ADS  Google Scholar 

  57. S.M.S. Murshed, Heat Transf. Eng. 33, 722 (2012)

    Article  ADS  Google Scholar 

  58. M.J. Pastoriza-Gallego, L. Lugo, J.L. Legido, M.M. Piñeiro, Nanoscale Res. Lett. 6, 221 (2011)

    Article  ADS  Google Scholar 

  59. H. Xie, W. Yu, Y. Li, L. Chen, Nanoscale Res. Lett. 6, 124 (2011)

    Article  ADS  Google Scholar 

  60. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, J. Appl. Phys. 91, 4568 (2002)

    Article  ADS  Google Scholar 

  61. E.B. Haghighi, M. Saleemi, N. Nikkam, R. Khodabandeh, M.S. Toprak, M. Muhammed, B. Palm, Int. Commun. Heat Mass Transf. 52, 1 (2014)

    Article  Google Scholar 

  62. L. Fedele, L. Colla, S. Bobbo, Int. J. Refrig. 35, 1359 (2012)

    Article  Google Scholar 

  63. M.C.S. Reddy, V.V. Rao, Int. Commun. Heat Mass Transf. 46, 31 (2013)

    Article  Google Scholar 

  64. W. Duangthongsuk, S. Wongwises, Exp. Therm. Fluid Sci. 33, 706 (2009)

    Article  Google Scholar 

  65. A. Turgut, I. Tavman, M. Chirtoc, H.P. Schuchmann, C. Sauter, S. Tavman, Int. J. Thermophys. 30, 1213 (2009)

    Article  ADS  Google Scholar 

  66. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Int. J. Heat Mass Transf. 50, 2272 (2007)

    Article  Google Scholar 

  67. Z.L. Wang, D.W. Tang, S. Liu, X.H. Zheng, N. Araki, Int. J. Thermophys. 28, 1255 (2007)

    Article  ADS  Google Scholar 

  68. D. Wen, Y. Ding, IEEE Trans. Nanotechnol. 5, 220 (2006)

    Article  ADS  Google Scholar 

  69. S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 44, 367 (2005)

    Article  Google Scholar 

  70. B.C. Pak, Y.I. Cho, Exp. Heat Transf. 11, 151 (2007)

    Article  ADS  Google Scholar 

  71. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. I, 3rd edn. (Dover, New York, 1954), p. 430

    Google Scholar 

  72. H. Fricke, Phys. Rev. 24, 575 (1924)

    Article  ADS  Google Scholar 

  73. Nanophase and Nanocomposite Materials II, ed. by S. Komarnemi, J.C. Parker, H.J. Wollenberger (Materials Research Society, Boston, MA, 1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. Assael.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tertsinidou, G., Assael, M. & Wakeham, W.A. The Apparent Thermal Conductivity of Liquids Containing Solid Particles of Nanometer Dimensions: A Critique. Int J Thermophys 36, 1367–1395 (2015). https://doi.org/10.1007/s10765-015-1856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1856-9

Keywords

Navigation