Skip to main content
Log in

Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper reports measurements of the effective thermal conductivity and thermal diffusivity of various nanofluids using the transient short-hot-wire technique. To remove the influences of the static charge and electrical conductance of the nanoparticles on measurement accuracy, the short-hot-wire probes are carefully coated with a pure Al2O3 thin film. Using distilled water and toluene as standard liquids of known thermal conductivity and thermal diffusivity, the length and radius of the hot wire and the thickness of the Al2O3 film are calibrated before and after application of the coating. The electrical leakage of the short-hot-wire probes is frequently checked, and only those probes that are coated well are used for measurements. In the present study, the effective thermal conductivities and thermal diffusivities of Al2O3/water, ZrO2/water, TiO2/water, and CuO/water nanofluids are measured and the effects of the volume fractions and thermal conductivities of nanoparticles and temperature are clarified. The average diameters of Al2O3, ZrO2, TiO2, and CuO particles are 20, 20, 40, and 33 nm, respectively. The uncertainty of the present measurements is estimated to be within 1% for the thermal conductivity and 5% for the thermal diffusivity. The measured results demonstrate that the effective thermal conductivities of the nanofluids show no anomalous enhancement and can be predicted accurately by the model equation of Hamilton and Crosser, when the spherical nanoparticles are dispersed into fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamilton R.L., Crosser O.K. (1962). Ind. Eng. Chem. Fundam. 1:187

    Article  Google Scholar 

  2. Kumada T. (1975). Trans. Jpn. Soc. Mech. Engrs. 41:1209

    Google Scholar 

  3. Yamada E., Ota T. (1980). Wärme- und Stoffübertragung 13:27

    Article  ADS  Google Scholar 

  4. Sasaki H., Masuda H., in Proc. 3rd Asian Thermophys. Prop. Conf. (1992), p. 425.

  5. Masuda H., Ebata A., Teramae K., Hishinuma N. (1993). Jpn. J. Thermophys. Prop. 7:227

    Google Scholar 

  6. S. U. S. Choi, Developments and Applications of Non-Newtonian Flows, FED-231/MD-66:99 (ASME, New York, 1995).

  7. Wang X., Xu X., Choi S.U.S. (1999). J. Thermophys. Heat Transfer 13:474

    Article  Google Scholar 

  8. Lee S., Choi S.U.S., Li S., Eastman J.A. (1999) J. Heat Transfer 121:280

    Article  Google Scholar 

  9. Xie H.Q., Wang J., Xi T., Liu Y., Ai F. (2002). J. Appl. Phys. 91:4568

    Article  ADS  Google Scholar 

  10. Xuan Y., Li Q., Hu W. (2003). AIChE J. 49:1038

    Article  Google Scholar 

  11. Hemanth Kumar D., Hrishikesh E. Patel, Rajeev Kumar V.R., Sundararajan T., Pradeep T., Sarit K. Das (2004). Phys. Rev. Lett. 93:144301

    Article  ADS  Google Scholar 

  12. X. Zhang, T. Tomimura, and M. Fujii, in Proc. 14th Japan Symp. Thermophys. Prop. (Jpn. Soc. Thermophys. Prop., 1993), p. 23.

  13. Fujii M., Zhang X., Imaishi N., Fujiwara S., Sakamoto T. (1997). Int. J. Thermophys. 18:327

    Article  Google Scholar 

  14. Zhang X., Fujii M. (2000). Int. J. Thermophys. 21:71

    Article  Google Scholar 

  15. Nieto de Castro C.A., Li S.F.Y., Nagashima A., Trengove R.D., Wakeham W.A. (1986). J. Phys. Chem. Ref. Data 15:1073

    Article  ADS  Google Scholar 

  16. JSME Data Book: Heat Transfer, 4th Ed. (1986), p. 331.

  17. Das S.K., Putra N., Thiesen P., Roetzel W. (2003) J. Heat Transfer 125:567

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Gu, H. & Fujii, M. Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids. Int J Thermophys 27, 569–580 (2006). https://doi.org/10.1007/s10765-006-0054-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0054-1

Keywords

Navigation