Skip to main content
Log in

Investigation of Double-groove Loaded Folded-Waveguide Slow-wave Structure for Millimeter Traveling-wave Tubes

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

To enhance the strength of beam-wave interaction and improve the performance of gain, the double-groove loaded folded-waveguide slow-wave structure (SWS) is proposed for millimeter traveling-wave tubes (TWTs). In the first part, the expressions for the dispersion and the interaction impedance of this novel structure are obtained by using matching conditions of the RF fields. Ansoft HFSS is also used to calculate the high frequency characteristics. The simulation results from HFSS agree with the theoretical results. Numerical calculation for different combinations of the groove width and depth is carried out to study the influence of groove loading on the properties of this novel circuit. In the second part, a linear theory of a double-groove loaded folded-waveguide TWT is developed and calculated for analyzing the effect of groove dimensions on the property of small signal gain. The investigation results indicate that the interaction impedance is obviously raised up and the small signal gain are enhanced by loading groove in the FWSWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. H. Na, S. W. Chung, J. J. Choi, IEEE Trans. Plasma Science, 30(3), 1017-1023 (2002)

    Article  Google Scholar 

  2. J.H. Booske, M.C. Converse, C. L. Kory, C.T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, S. Bhattacharjee, IEEE Trans. Electron Devices, 52(5), 685-694 (2005)

    Article  Google Scholar 

  3. S. Bhattacharjee, J.H. Booske, C. L. Kory, D. W. Weide, S. Limbach, S. Gallagher, J. D. Welter, M. R. Lopez, R. M. Gilgenbach, R. L. Ives, M. E. Read, R. Divan, D. C. Mancini, IEEE Trans. Plasma Science, 32(3), 1002-1014(2004)

    Article  Google Scholar 

  4. G. Dohler, D. Gagne, D. Gallagher, R. Moats International Electron Devices Meeting, Washington D.C., December 6-9, p485-488(1987)

  5. A. Xu, W. X. Wang, Y. Y. Wei, Y. B. Gong, Chin. Phys. B, 18(2), 810-814(2009)

    Article  Google Scholar 

  6. J. He, Y. Y. Wei, Y. B. Gong, W. X. Wang, Acta. Phys. Sin. 59(4), 2843-2849(2010)

    Google Scholar 

  7. L. Sadwick, R. J. Hwu , G. Scheitrum, Int. Vacuum Electronics Conf., Seoul, May 28-30, 360-361(2003)

  8. J. He, Y. Y. Wei, Y. B. Gong, Z. G. Lu, W. X. Wang, Acta. Phys. Sin. 59(9) , 6655-6661(2010)

    Google Scholar 

  9. J. Tucek, M. Basten, D. Gallagher, K. Kreischer, R. Mihailovich, O. Makarova, C. Tang Pro. Int. Vacuum Electron. Conf., Rome, April 28-30, 108-109(2009)

  10. M. Sumathy , K. J. Vinoy, S. K. Datta, IEEE Transactions on Electron Devices,57(6), 1440-1446(2010)

    Article  Google Scholar 

  11. S. Mukhin , and V. Solntsev, Radiotechnica I electronic, 33, 1310-1313(1988)

    Google Scholar 

  12. J. Joe , J. E. Scharer , J. H. Booske , B. D. McVey, Phys. Plasmas, 1(1) ,176-188(1994)

    Article  Google Scholar 

  13. Anosft Co, High frequency structure simulator user’s reference, 2001

  14. J. R. Pierce, Traveling wave tubes (Princeton, NJ: Van Nostrand, 1950), pp. 231-259

    Google Scholar 

  15. A. S. Gilmour, Principles of Traveling Wave Tubes (Boston: Artech House, 1994), pp. 318-322

    Google Scholar 

  16. A. K. Ganguly , J. J. Choi and C. M. Armstrong, IEEE Trans. Electron Devices, 42(2) 348-355(1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Wei, Y. Investigation of Double-groove Loaded Folded-Waveguide Slow-wave Structure for Millimeter Traveling-wave Tubes. J Infrared Milli Terahz Waves 35, 288–299 (2014). https://doi.org/10.1007/s10762-014-0049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0049-0

Keywords

Navigation