Skip to main content
Log in

Zooplankton functional groups in tropical reservoirs: discriminating traits and environmental drivers

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Trait-based approaches are increasingly being used in aquatic ecology to elucidate how environmental conditions affect community assembly. However, studies of zooplankton from tropical regions are relatively rare. Our objective was to construct zooplankton trait-based functional groups (ZFG) to study tropical reservoirs that differ with respect to precipitation, eutrophication and hydrological operations. We selected and analysed zooplankton and associated environmental variables from four tropical reservoirs that were sampled during dry and rainy seasons for three years. Eight traits were evaluated to construct ZFGs using hierarchical clusters and classification trees. Six ZFGs were identified based on three non-redundant functional traits: habitat type, feeding and predatory escape response. Significant differences in the density and biomass of ZFGs were observed as indicated by regression models showing reservoir morphometry, hydrology, rainfall, and phytoplankton biomass as main environmental drivers. Our results highlight the usefulness of ZFG to monitoring programmes and for predicting zooplankton community changes in tropical reservoirs, allowing a greater understanding of plankton dynamics and ecosystems functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Allan, J. D., 1976. Life History Patterns in Zooplankton. The American Naturalist 110: 165–180.

  • APHA, 2005. Standard Methods for the Examination of Water and. Wastewater, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, USA. American Public Health Association.

  • Arcifa, M. S., B. B. de Souza, C. S. de Morais-Junior & C. G. C. Bruno, 2020. Functional groups of rotifers and an exotic species in a tropical shallow lake. Scientific Reports Nature Publishing Group UK 10: 1–10.

    Google Scholar 

  • Cassano, C. R., Castilho-Noll, M. S. M. & M. S. Arcifa, 2002. Water mite predation on zooplankton of a tropical lake. Brazilian Journal of Biology 62: 565–571.

  • Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: Towards a trait-based classification. Freshwater Biology 52: 796–813.

    Article  Google Scholar 

  • Bays, J. S. & T. L. Crisman, 1983. Zooplankton and Trophic State Relationships in Florida Lakes. Canadian Journal of Fisheries and Aquatic Sciences 40: 1813–1819.

    Article  Google Scholar 

  • Benedetti, F., S. Gasparini & S. D. Ayata, 2015. Identifying copepod functional groups from species functional traits. Journal of Plankton Research 38: 159–166.

    Article  Google Scholar 

  • Benedetti, F., S. D. Ayata, J. O. Irisson, F. Adloff & F. Guilhaumon, 2019. Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea. Diversity and Distributions 25: 568–581.

    Article  Google Scholar 

  • Bezerra-Neto, J. F., Mello, N. A. S. T., Maia-Barbosa, P. M., & Pinto-Coelho, R. M., 2009. The role of predation in the diel vertical migration of zooplankton in two tropical freshwaters ecosystems. Acta Limnologica Brasiliensia 21(1): 45–56.

  • Bolduc, P., A. Bertolo & B. Pinel-Alloul, 2016. Does submerged aquatic vegetation shape zooplankton community structure and functional diversity? A test with a shallow fluvial lake system. Hydrobiologia Springer International Publishing 778: 151–165.

    Google Scholar 

  • Bourel, M. & A. M. Segura, 2018. Multiclass classification methods in ecology. Ecological Indicators 85: 1012–1021.

    Article  Google Scholar 

  • Bradley, C. J., J. R. Strickler, E. J. Buskey & P. H. Lenz, 2013. Swimming and escape behavior in two species of calanoid copepods from nauplius to adult. Journal of Plankton Research 35: 49–65.

    Article  Google Scholar 

  • Braghin, L. de S. M., B. de A. Almeida, D. C. Amaral, T. F. Canella, B. C. G. Garcia, & C. C. Bonecker, 2018. Effects of dams decrease zooplankton functional β-diversity in river-associated lakes. Freshwater Biology 63: 721–730.

  • Branco, C. W. C., M. I. A. Rocha, G. F. S. Pinto, G. A. Gômara & R. De Filippo, 2002. Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes and Reservoirs: Research and Management 7: 87–92.

    Article  CAS  Google Scholar 

  • Branco, C. W. C., J. J. F. Leal & V. L. de M. Huszar, D. da S. Farias, T. D. Saint’Pierre, I. F. Sousa-Filho, E. F. de A. de Palermo, A. W. S. Guarino, A. R. Gomes, & B. Kozlowsky-Suzuki, 2019. New lake in a changing world: the construction and filling of a small hydropower reservoir in the tropics (Rio de Janeiro, Brazil). Environmental Science and Pollution Research Environmental Science and Pollution Research 26: 36007–36022.

    Article  CAS  Google Scholar 

  • Coelho, P. N., & R. Henry, 2021. Functional groups of microcrustaceans along a horizontal gradient in a Neotropical lake colonized by macrophytes. Aquatic Sciences 83. https://doi.org/10.1007/s00027-020-00759-3.

  • Couto, T. B. A. & J. D. Olden, 2018. Global proliferation of small hydropower plants – science and policy. Frontiers in Ecology and the Environment 16: 91–100.

    Article  Google Scholar 

  • Czerniawski, R., & Ł. Sługocki, 2018. A comparison of the effect of beaver and human-made impoundments on stream zooplankton. Ecohydrology 11(5): e1963.

  • Braghin, L. & S. M., J. D. Dias, N. R. Simões, & C. C. Bonecker, 2021. Food availability, depth, and turbidity drive zooplankton functional diversity over time in a Neotropical floodplain. Aquatic Sciences Springer International Publishing 83: 1–11.

    Google Scholar 

  • Elmoor-Loureiro, M L., 1997. Manual de Identificação de Cladóceros Límnicos do Brasil, Editora Universa - UCB, Brasilia.

    Google Scholar 

  • Sodré, E. & O., & R. L. Bozelli, 2019. How planktonic microcrustaceans respond to environment and affect ecosystem: a functional trait perspective. International Aquatic Research 11: 207–223.

    Article  Google Scholar 

  • De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. Van Donk, M. Winder & M. Lürling, 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.

    Article  Google Scholar 

  • Deosti, S., F. de Fátima Bomfim, F. M. Lansac-Tôha, B. A. Quirino, C. C. Bonecker & F. A. Lansac-Tôha, 2021. Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river. Hydrobiologia 848: 1475–1490.

    Article  Google Scholar 

  • Dodson, S. I., 1974. Zooplankton Competition and Predation: An Experimental Test of the Size-Efficiency Hypothesis. Ecology 55: 605–613.

    Article  Google Scholar 

  • Dumont, H. J., & Ștefan Negrea, 2002. Branchiopoda. Backhuys Publishers. Amsterdam, Netherlands.

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  Google Scholar 

  • Duré, G. A. V., N. R. Simões, L. D. S. M. Braghin & S. M. M. S. Ribeiro, 2021. Effect of eutrophication on the functional diversity of zooplankton in shallow ponds in Northeast Brazil. Journal of Plankton Research 43(6): 894–907.

    Article  Google Scholar 

  • Dussart, B. H., & D. Defaye, 1995. Copepoda. Introduction to the Copepoda. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Vol 7. SPB Academic Publishing. London, England.

  • Fryer, G., 1996. Diapause, a potent force in the evolution of freshwater crustaceans. Hydrobiologia 320: 1–14.

    Article  Google Scholar 

  • Gagic, V., I. Bartomeus, T. Jonsson, A. Taylor, C. Winqvist, C. Fischer, E. M. Slade, I. Steffan-Dewenter, M. Emmerson, S. G. Potts, T. Tscharntke, W. Weisser & R. Bommarco, 2015. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society b: Biological Sciences 282: 20142620.

    Article  Google Scholar 

  • Gavrilko, D. E., G. V. Shurganova, I. A. Kudrin & B. N. Yakimov, 2021. Identification of Freshwater Zooplankton Functional Groups Based on the Functional Traits of Species. Biology Bulletin Springer 48: 1849–1856.

    Article  Google Scholar 

  • Geber, M. A. & L. R. Griffen, 2003. Inheritance and Natural Selection on Functional Traits. International Journal of Plant Sciences 164: S21–S42.

    Article  Google Scholar 

  • Gillooly, J. J. F. & S. I. S. Dodson, 2000. Latitudinal Patterns in the Size Distribution and Seasonal Dynamics of New World, Freshwater Cladocerans. Limnology and Oceanography 45: 22–30.

    Article  Google Scholar 

  • Gomes, L. F., H. R. Pereira, A. C. A. M. Gomes, M. C. Vieira, P. R. Martins, I. Roitman & L. C. G. Vieira, 2019. Zooplankton functional-approach studies in continental aquatic environments: a systematic review. Aquatic Ecology 53: 191–203.

    Article  Google Scholar 

  • Gower, J. C., 1971. A General Coefficient of Similarity and Some of Its Properties. Biometrics 27: 857–871.

    Article  Google Scholar 

  • Guarino, A. W. S., C. W. C. Branco, G. P. Diniz & R. R, 2005. Limnological Characteristics of an Old Tropical Reservoir (Ribeirão das Lajes Reservoir, RJ, Brazil). Acta Limnologica Brasiliensia 17: 129–141. 

    Google Scholar 

  • Gyllstrom, M. & L.-A. Hansson, 2004. Dormancy in freshwater zooplankton: Induction, termination and the importance of benthic-pelagic coupling. Aquatic Sciences 66(3): 274–295.

    Article  Google Scholar 

  • Hamilton, A. T., R. B. Schäfer, M. I. Pyne, B. Chessman, K. Kakouei, K. S. Boersma, P. F. M. Verdonschot, R. C. M. Verdonschot, M. Mims, K. Khamis, B. Bierwagen & J. Stamp, 2020. Limitations of trait-based approaches for stressor assessment: The case of freshwater invertebrates and climate drivers. Global Change Biology 26: 364–379.

    Article  Google Scholar 

  • Hébert, M. P., B. E. Beisner & R. Maranger, 2017. Linking zooplankton communities to ecosystem functioning: Toward an effect-Trait framework. Journal of Plankton Research 39: 3–12.

    Article  Google Scholar 

  • Hedrick, P. W., 2005. A Standardized Genetic Differentiation Measure a Standardized Genetic Differentiation Measure. Evolution 59: 1633–1638.

    CAS  Google Scholar 

  • Heiberger, R. M., 2018. HH: Statistical Analysis and Data Display: Heiberger and Holland. https://cran.r-project.org/web/packages/HH/.

  • Hillebrand, Helmut & Andrey I. Azovsky, 2001. Body size determines the strength of the latitudinal diversity gradient. Ecography 24(3): 251–256.

    Article  Google Scholar 

  • Jeppesen, E., P. Nõges, T. A. Davidson, J. Haberman, T. Nõges, K. Blank, T. L. Lauridsen, M. Søndergaard, C. Sayer, R. Laugaste, L. S. Johansson, R. Bjerring & S. L. Amsinck, 2011. Zooplankton as indicators in lakes: A scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297.

    Article  CAS  Google Scholar 

  • Josué, I. I. P., S. J. Cardoso, M. Miranda, M. Mucci, K. A. Ger, F. Roland & M. M. Marinho, 2019. Cyanobacteria dominance drives zooplankton functional dispersion. Hydrobiologia 831: 149–161.

    Article  Google Scholar 

  • Kelman, J., 2015. Water Supply to the Two Largest Brazilian Metropolitan Regions. Aquatic Procedia Elsevier B.V. 5: 13–21.

  • Kiørboe, T., 2011. How zooplankton feed: Mechanisms, traits and trade-offs. Biological Reviews 86: 311–339.

    Article  Google Scholar 

  • Klippel, G., R. L. Macêdo & C. W. C. Branco, 2020. Comparison of different trophic state indices applied to tropical reservoirs. Lakes and Reservoirs: Research and Management 25: 214–229.

    Article  CAS  Google Scholar 

  • Kosiba, J., W. Krztoń & E. Wilk-Woźniak, 2018. Effect of Microcystins on Proto- and Metazooplankton Is More Evident in Artificial Than in Natural Waterbodies. Microbial Ecology 75: 293–302.

    Article  CAS  Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Radertiere Mittel-europas, Berlin and St. Gebriider Borntraeger. Berlin, Germany.

  • Kruk, C. & A. M. Segura, 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698: 191–202.

    Article  CAS  Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Kruk, C., A. M. Segura, L. Nogueira, I. Alcántara, D. Calliari, G. Martínez de la Escalera, C. Carballo, C. Cabrera, F. Sarthou, P. Scavone, & C. Piccini, 2017. A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean. Harmful Algae Elsevier B.V. 70: 23–36.

  • Krztoń, W., & J. Kosiba, 2020. Variations in zooplankton functional groups density in freshwater ecosystems exposed to cyanobacterial blooms. Science of the Total Environment 730: 139044.

  • Lamothe, K. A., K. M. Alofs, D. A. Jackson & K. M. Somers, 2018. Functional diversity and redundancy of freshwater fish communities across biogeographic and environmental gradients. Diversity and Distributions 24: 1612–1626.

    Article  Google Scholar 

  • Lansac-Tôha, F., C. C. Bonecker, & L. F. M. Velho, 2005. Estrutura da Comunidade Zooplanctônica em Reservatórios. Padrões espaciais e temporais. RiMa/IIE., São Carlos: 333p.

  • Latja, R., & K. Salonen, 1978. Carbon analysis for the determination of individual biomasses of planktonic animals. SIL Proceedings, 1922–2010 Taylor & Francis 20: 2556–2560.

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, Elsevier. Québec, Canada.

    Google Scholar 

  • Litchman, E., M. D. Ohman & T. Kiørboe, 2013. Trait-based approaches to zooplankton communities. Journal of Plankton Research 35: 473–484.

    Article  Google Scholar 

  • Lokko, K., T. Virro & J. Kotta, 2017. Seasonal variability in the structure and functional diversity of psammic rotifer communities: role of environmental parameters. Hydrobiologia 796: 287–307.

    Article  Google Scholar 

  • Lopes, V. G., C. W. Castelo Branco, B. Kozlowsky-Suzuki, I. F. Sousa-Filho & L. C. e. Souza, & L. M. Bini, 2017. Predicting temporal variation in zooplankton beta diversity is challenging. PLoS ONE 12(11): e0187499.

    Article  Google Scholar 

  • Lush, G. B., & R. A. Palmer, 1975. Field trials comparing the biological effectiveness of Controlled Drop Application. British Crop Protection Conference-Weeds 2:391.

  • Lynch, M., 1980. The Evolution of Cladoceran Life Histories. The Quarterly Review of Biology 55: 23–42.

  • Manca, M. & P. Comoli, 1999. Studies on zooplankton of Lago Paione Superiore. Journal of Limnology 58: 131–135.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. T. de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Millenium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being: Biodiversity Synthesis. British Cataloguing.

  • Mwagona, P. C., M. Chengxue & Y. Hongxian, 2018a. Seasonal dynamics of Zooplankton functional groups in relation to environmental variables in Xiquanyan Reservoir. Northeast China. Annales De Limnologie 54: 33.

    Article  Google Scholar 

  • Mwagona, P. C., Y. Yao, Y. Shan, H. Yu & Y. Zhang, 2018b. Trend and abrupt regime shift of temperature extreme in Northeast China, 1957–2015. Advances in Meteorology Hindawi 2018(3): 1–12.

    Google Scholar 

  • Obertegger, U. & G. Flaim, 2015. Community assembly of rotifers based on morphological traits. Hydrobiologia 753: 31–45.

    Article  Google Scholar 

  • Obertegger, U. & G. Flaim, 2018. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly? Hydrobiologia Springer International Publishing 823: 79–91.

    Google Scholar 

  • Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. Journal of Limnology 70: 231–238.

    Article  Google Scholar 

  • Padhye, S. M., 2020. Seasonal variation in functional composition and diversity of cladoceran zooplankton of a lotic eutrophic habitat from India. Annales De Limnologie 56: 11.

    Article  Google Scholar 

  • Panarelli, E. A., M. G. Nogueira, & R. Henry, 2001. Short-term variability of copepod abundance in Jurumirim Reservoir, Sao Paulo, Brazil. Brazilian Journal of Biology 61: 577–59.

  • Pauli, H. R., 1989. A new method to estimate individual dry weights of rotifers. Hydrobiologia 186–187: 355–361.

    Article  Google Scholar 

  • Perbiche-Neves, G., G. A. Boxshall, D. Previattelli, M. G. Nogueira & C. E. F. da Rocha, 2015. Identification guide to some Diaptomid species (Crustacea, Copepoda, Calanoida, Diaptomidae) of “de la Plata” River Basin (South America). ZooKeys 111: 1–111.

    Article  Google Scholar 

  • Pereira, L. S. & R. de A. F. Neves, I. C. Miyahira, B. Kozlowsky-Suzuki, C. W. C. Branco, J. C. de Paula, & L. N. dos Santos, 2018. Non-native species in reservoirs: how are we doing in Brazil? Hydrobiologia 817: 71–84.

    Article  Google Scholar 

  • Perticarrari, A., Arcifa, M. S., & R. A. Rodrigues, 2004. Diel vertical migration of copepods in a Brazilian lake: a mechanism for decreasing risk of Chaoborus predation? Brazilian Journal of Biology 64(2): 289–298.

  • Picapedra, P. H. S., C. Fernandes, J. Taborda, G. Baumgartner, & P. V. Sanches, 2020. A long-term study on zooplankton in two contrasting cascade reservoirs (Iguaçu River, Brazil): Effects of inter-annual, seasonal, and environmental factors. PeerJ 2020 5: 8:e8979.

  • Pinheiro, J., D. Bate, S. DebRoy, D. Sarkar, & “R Core Team,” 2018. nlme: Linear and Nonlinear Mixed Effects Models. https://cran.r-project.org/package=nlme.

  • Pinto-Coelho, R., 1987. Flutuações sazonais e de curta duração na comunidade zooplanctônica do Lago Paranoá, Brasília, DF, Brasil. Revista Brasileira de Biologia 47: 17–29.

    Google Scholar 

  • Pinto-Coelho, R., B. Pinel-Alloul, G. Méthot & K. E. Havens, 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Canadian Journal of Fisheries and Aquatic Sciences 62: 348–361.

    Article  CAS  Google Scholar 

  • Pitelli, R. A., & R. L. de C. M. Pitelli, 2008. Biologia e ecofisiologia das plantas daninhas Manual de Manejo e Controle de Plantas Daninhas. Embrapa Trigo, Passo Fundo: 11–38.

  • R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, http://www.r-project.org/.

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Ripley, R., K. Hornik, a Gebhardt, & D. Firth, 2011. MASS: support functions and datasets for Venables and Ripley’s MASS. R package. http://essrc.hyogo-u.ac.jp/cran/web/packages/MASS/.

  • Rizo, E. Z. C., Y. Gu, R. D. S. Papa, H. J. Dumont & B. P. Han, 2017. Identifying functional groups and ecological roles of tropical and subtropical freshwater Cladocera in Asia. Hydrobiologia 799: 1–17.

    Google Scholar 

  • Rocha, O., Matsumura-Tundisi, T., Tundisi, J.G & C. P. Fonseca, 1990. Predation on and by pelagic Turbellaria in some lakes in Brazil. Hydrobiologia 198: 91-101.

  • Rocha, M. I. A., F. Recknagel, R. T. Minoti, V. L. M. Huszar, B. Kozlowsky-Suzuki, H. Cao, F. L. R. M. Starling & C. W. C. Branco, 2019. Assessing the effect of abiotic variables and zooplankton on picocyanobacterial dominance in two tropical mesotrophic reservoirs by means of evolutionary computation. Water Research 149: 120–129.

    Article  CAS  Google Scholar 

  • Romanovsky, Y. E., 1985. Food limitation and life-history strategies in cladoceran crustaceans. Arch. Hydrobiol. Beih. Ergebn. Limnol 21: 363–372.

    Google Scholar 

  • Romanovsky, Y. E., 1984. Competitive Advantages in Cladoceran Crustaceans. Hydrobiology 69:. Internationale Revue der gesamten Hydrobiologie und Hydrographie 69: 613–632.

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of plankton rotifers. Archiv für Hydrobiologie. Beihefte. Ergebnisse der Limnologie 21: 71–76.

    Google Scholar 

  • Sarmento, H., 2012. New paradigms in tropical limnology: The importance of the microbial food web. Hydrobiologia 686: 1–14.

    Article  Google Scholar 

  • Segers, H., 1995. Rotifera 2. The Lecanidae (Monogononta) Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 6. SPB Academic Publishing BV. London, England.

  • Semmar, N., B. Bruguerolle, S. Boullu-Ciocca & N. Simon, 2005. Cluster analysis: an alternative method for covariate selection in population pharmacokinetic modeling. Journal of Pharmacokinetics and Pharmacodynamics Springer 32: 333–358.

    Article  CAS  Google Scholar 

  • Sendacz, S., S. Caleffi & Santos-Soares, 2006. Zooplankton Biomass of Reservoirs in Different Trophic Conditions in the State of São Paulo. Brazil. Brazilian Journal of Biology 66: 337–350.

    Article  CAS  Google Scholar 

  • Setubal, R. B. & R. L. Bozelli, 2021. Zooplankton functional complementarity between temporary and permanent environments. Acta Limnologica Brasiliensia 33: e3.

    Article  Google Scholar 

  • Streble, H., & D. Krauter, 1987. Atlas de los microorganismos de agua dulce: la vida en una gota de agua. Barcelona, Spain.

  • Talling, J. F., J. F. Talling & J. Lemoalle, 1998. Ecological dynamics of tropical inland waters, Cambridge University Press. Cambridge, England.

    Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical Correspondence Analysis : A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecological Society of America Stable 67: 1167-1179.

  • Tundisi, J., T. Matsumura-Tundisi & D. Abe, 2008. The ecological dynamics of Barra Bonita (Tietê River, SP, Brazil) reservoir: implications for its biodiversity. Brazilian Journal of Biology 68: 1079–1098.

    Article  CAS  Google Scholar 

  • Tundisi, J. G., & T. M. Tundisi, 2016. Limnologia. Oficina de textos. São Paulo, Brazil.

  • Violle, M., D. Navas, E. Kazakou. Vile & C. Fortunel, 2007. Let the Concept of Trait Be Functional! Wiley on Behalf of Nordic Society Oikos 116: 882–892.

    Google Scholar 

  • Voigt, M. & W. Koste, 1978. Rotatoria : die Rädertiere Mitteleuropas : ein Bestimmungswerk : Überordnung Monogononta, Borntraeger. Berlin, Germany.

    Google Scholar 

  • Warnes, G. R., B. Bolker, L. Bonebakker, R. Gentleman, W. H. A. Liaw, T. Lumley, M. Maechler, A. Magnusson, S. Moeller, M. Schwartz, & B. Venables, 2018. Recursive Partitioning and Regression Trees. https://cran.r-project.org/web/packages/rpart/index.html

  • Xu, D. & Y. Tian, 2015. A Comprehensive Survey of Clustering Algorithms. Annals of Data Science Springer, Berlin Heidelberg 2: 165–193.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Light Energia S.A. for financial and logistic support (Research and Development Project coordinated by CWCB). We express our gratitude to Adriana Puga, Leonardo Coimbra and Izidro Ferreira de Sousa-Filho for field assistance in sample collections and analyses; Ángel Segura, Luciano Neves, Mariana Guedes and Reinaldo Bozelli for helping with concept and statistical analysis of this manuscript. Special thanks to Unirio and Udelar for the facilities provided for the execution of this research, as well as for the exchange of knowledge carried out by professors, researchers and students. We would like to thank Red de Macro Universidades de América Latina y el Caribe and Santander Universidades for the Master’s Academic Mobility Scholarship to EFO, and also to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the doctorate scholarship to EFO and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the Master scholarship to GK.

Funding

Data used in this manuscript came from the Project of Research and Development Carbon, Nitrogen and Phosphorus Storage in Reservoirs supported by the Light Energia S.A. Company and coordinated by CWCB.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly towards the conception of this manuscript. EFO, CWCB, CK and GL: conceptualization was done. EFO, GK, CK and GL: data curation and investigation were carried out. EFO, GK, CK and GL: formal analysis was carried out. EFO, CK and GL: writing—original draft were done. CK, GL, CWCB and GK: writing—review and editing were done.

Corresponding author

Correspondence to Ewerton Fintelman-Oliveira.

Ethics declarations

Conflict of interest

No potential competing interest was reported by the authors.

Additional information

Handling Editor: Andrew Dzialowski

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fintelman-Oliveira, E., Kruk, C., Lacerot, G. et al. Zooplankton functional groups in tropical reservoirs: discriminating traits and environmental drivers. Hydrobiologia 850, 365–384 (2023). https://doi.org/10.1007/s10750-022-05074-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05074-6

Keywords

Navigation