Skip to main content
Log in

Habitat templates of phytoplankton functional groups in tropical reservoirs as a tool to understand environmental changes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Trait-based classifications can efficiently capture species’ responses to environmental gradients and their impacts on ecosystem functioning. Thus, the clustering of phytoplankton species into functional groups can improve the understanding of their relationships with the environment and help to predict their response to environmental changes. Accordingly, this study aimed to create habitat templates of Reynolds phytoplankton functional groups (RFGs) in tropical drinking water reservoirs to describe, explain, and predict their occurrence and formation of blooms. We analyzed the structure of RFGs in 10 tropical reservoirs, in humid and semiarid regions of Brazil, and defined their relationships with 10 environmental variables. We designated the habitat template based on niche differentiation, thresholds for the occurrences and bloom formation, cluster analyses, and generalized additive models. We identified 136 species, assembled in 20 RFGs. Six groups of habitat templates were recognized based on environmental conditions and dominant RFGs, usually represented by bloom-forming species of cyanobacteria, dinoflagellates, green algae, and diatoms. The functional groups D, X1, and P presented the most restrictive occurrences, while RFGs M and SN displayed the widest, occurring in almost all sets of conditions. Moreover, salinity was the best predictor of RFGs’ biomass (higher R2), followed by depth, soluble reactive phosphorus, irradiance, water transparency, and dissolved inorganic nitrogen. Our approach improves the understanding of how RFGs interact with environmental gradients in tropical reservoirs, helping water managers to adopt sustainable practices to control algal blooms, based on predictions of the future state of dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amorim, C. A. & A. N. Moura, 2020. Effects of the manipulation of submerged macrophytes, large zooplankton, and nutrients on a cyanobacterial bloom: A mesocosm study in a tropical shallow reservoir. Environmental Pollution 265: 114997.

    Article  CAS  PubMed  Google Scholar 

  • Amorim, C. A. & A. N. Moura, 2021. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Science of The Total Environment 758: 143605.

    Article  CAS  Google Scholar 

  • Amorim, C. A., C. R. Valença, R. H. Moura-Falcão & A. N. Moura, 2019. Seasonal variations of morpho-functional phytoplankton groups influence the top-down control of a cladoceran in a tropical hypereutrophic lake. Aquatic Ecology 53: 453–464.

    Article  CAS  Google Scholar 

  • Amorim, C. A., Ê. W. Dantas & A. N. Moura, 2020. Modeling cyanobacterial blooms in tropical reservoirs: The role of physicochemical variables and trophic interactions. Science of The Total Environment 744: 140659.

    Article  CAS  Google Scholar 

  • Anagnostidis, K. & J. Komárek, 1988. Modern approach to the classification system of cyanophytes. 3 – Oscillatoriales. Algological Studies/Archiv für Hydrobiologie 50/53: 327–472.

    Google Scholar 

  • Barbosa, L. G., C. A. Amorim, G. Parra, J. Laço Portinho, M. Morais, E. A. Morales & R. F. Menezes, 2020. Advances in limnological research in Earth’s drylands. Inland Waters 10: 429–437.

    Article  Google Scholar 

  • Benincà, E., B. Ballantine, S. P. Ellner & J. Huisman, 2015. Species fluctuations sustained by a cyclic succession at the edge of chaos. Proceedings of the National Academy of Sciences 112: 6389–6394.

    Article  Google Scholar 

  • Borics, G., A. Abonyi, N. Salmaso & R. Ptacnik, 2021. Freshwater phytoplankton diversity: models, drivers and implications for ecosystem properties. Hydrobiologia 848: 53–75.

    Article  CAS  PubMed  Google Scholar 

  • Borics, G., V. B. Béres, I. Bácsi, B. A. Lukács, E. T. Krasznai, Z. Botta-Dukát & G. Várbíró, 2020. Trait convergence and trait divergence in lake phytoplankton reflect community assembly rules. Scientific Reports 10: 19599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braga, G. G. & V. Becker, 2020. Influence of water volume reduction on the phytoplankton dynamics in a semi-arid man-made lake: A comparison of two morphofunctional approaches. Anais Da Academia Brasileira De Ciências Academia Brasileira De Ciências 92: 20181102.

    Article  Google Scholar 

  • Brasil, J., J. L. Attayde, F. R. Vasconcelos, D. D. F. Dantas & V. L. M. Huszar, 2016. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770: 145–164.

    Article  CAS  Google Scholar 

  • Chorus, I. & E. Spijkerman, 2021. What Colin Reynolds could tell us about nutrient limitation, N: P ratios and eutrophication control. Hydrobiologia 848: 95–111.

    Article  CAS  Google Scholar 

  • Costa, M. R. A., J. L. Attayde & V. Becker, 2016. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia Springer 778: 75–89.

    Article  Google Scholar 

  • Crossetti, L. O., D. C. Bicudo, L. M. Bini, R. B. Dala-Corte, C. Ferragut & C. E. M. Bicudo, 2019. Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir. Hydrobiologia 831: 71–85.

    Article  CAS  Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  PubMed  Google Scholar 

  • Elliott, J. A., 2021. Modelling lake phytoplankton communities: recent applications of the PROTECH model. Hydrobiologia 848: 209–217.

    Article  CAS  Google Scholar 

  • Ger, K. A., P. Urrutia-Cordero, P. C. Frost, L.-A. Hansson, O. Sarnelle, A. E. Wilson & M. Lürling, 2016. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54: 128–144.

    Article  PubMed  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. H. Ohnstad, 1971. Chemical analysis of fresh waters, Blackwell Scientific Publishers, Oxford:

    Google Scholar 

  • Herrman, K. S., V. Bouchard & R. H. Moore, 2008. Factors affecting denitrification in agricultural headwater streams in Northeast Ohio, USA. Hydrobiologia 598: 305–314.

    Article  CAS  Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. The American Naturalist 95: 137–145.

    Article  Google Scholar 

  • Ibelings, B. W., M. Bormans, J. Fastner & P. M. Visser, 2016. CYANOCOST special issue on cyanobacterial blooms: synopsis – a critical review of the management options for their prevention, control and mitigation. Aquatic Ecology 50: 595–605.

    Article  CAS  Google Scholar 

  • Janssen, A. B. G., S. Hilt, S. Kosten, J. J. M. Klein, H. W. Paerl & D. B. Van de Waal, 2021. Shifting states, shifting services: linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology 66: 1–12.

    Article  Google Scholar 

  • Jeppesen, E., D. E. Canfield, R. W. Bachmann, M. Søndergaard, K. E. Havens, L. S. Johansson, T. L. Lauridsen, T. Sh, R. P. Rutter, G. Warren, G. Ji & M. V. Hoyer, 2020. Toward predicting climate change effects on lakes: a comparison of 1656 shallow lakes from Florida and Denmark reveals substantial differences in nutrient dynamics, metabolism, trophic structure, and top-down control. Inland Waters 10: 197–211.

    Article  CAS  Google Scholar 

  • John, D. M., B. A. Whitton & A. J. Brook, 2002. The Freshwater Algal Flora of the British Isles, Cambridge University Press, Cambridge.

    Google Scholar 

  • Keddy, P. & E. Weiher, 1999. The scope and goals of research on asssembly rules. In Weiher, E. & P. Keddy (eds), Ecological Assembly Rules: Perspectives, Advances, Retreats Cambridge University Press, Cambridge: 1–20.

    Google Scholar 

  • Komárek, J. & B. Fott, 1983. Chlorophyceae: Chlorococcales, Begründent von August Thienemann, Stuttgart.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1986. Modern approach to the classification system of Cyanophytes, 2: Chroococcales. Algological Studies/archiv Für Hydrobiologie 73: 157–226.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 2005. Cyanoprokayota 2: Oscillatoriales. In Budel, B., L. Krienitz, G. Gartner & M. Schargerl (eds), Süβwasserflora von Mitteleuropa Elsevier, Müncher: 1–759.

    Google Scholar 

  • Kosten, S., V. L. M. Huszar, N. Mazzeo, M. Scheffer, L. S. L. Sternberg & E. Jeppesen, 2009. Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecological Applications 19: 1791–1804.

    Article  PubMed  Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süβwasserflora von Mitteleuropa Gustav Fischer Verlag, Stuttgart: 1–486.

    Google Scholar 

  • Kruk, C. & A. M. Segura, 2012. The habitat template of phytoplankton morphology-based functional groups Phytoplankton responses to human impacts at different scales. Hydrobiologia 698: 191–202.

    Article  CAS  Google Scholar 

  • Kruk, C., M. Devercelli & V. L. Huszar, 2021. Reynolds Functional Groups: a trait-based pathway from patterns to predictions. Hydrobiologia 848: 113–129.

    Article  Google Scholar 

  • Kruk, C., M. Devercelli, V. L. M. Huszar, E. Hernández, G. Beamud, M. Diaz, L. H. S. Silva & A. M. Segura, 2017. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology 62: 1681–1692.

    Article  CAS  Google Scholar 

  • Kruk, C., V. L. H. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Long, S., T. Zhang, J. Fan, C. Li & K. Xiong, 2020. Responses of phytoplankton functional groups to environmental factors in the Pearl River, South China. Environmental Science and Pollution Research 27: 42242–42253.

    Article  CAS  PubMed  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Mantzouki, E., P. M. Visser, M. Bormans & B. W. Ibelings, 2016. Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquatic Ecology 50: 333–350.

    Article  CAS  Google Scholar 

  • Moura, A. N., N. K. C. Aragão-Tavares & C. A. Amorim, 2018. Cyanobacterial blooms in freshwaters bodies in a semiarid region, northeastern Brazil: a review. Journal of Limnology 77: 179–188.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2018. vegan: Community Ecology Package. R Package Version 2.5–2. https://CRAN.R-project.org/package=vegan

  • Padisák, J., G. Borics, I. Grigorszky & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: The assemblage index. Hydrobiologia 553: 1–14.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Prescott, G. W. & W. C. Vinyard, 1982. A Synopsis of North American Desmids, University of Nebraska Press, Nebraska.

    Google Scholar 

  • R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Reid, A. J., A. K. Carlson, I. F. Creed, E. J. Eliason, P. A. Gell, P. T. J. Johnson, K. A. Kidd, T. J. MacCormack, J. D. Olden, S. J. Ormerod, J. P. Smol, W. W. Taylor, K. Tockner, J. C. Vermaire, D. Dudgeon & S. J. Cooke, 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94: 849–873.

    Article  PubMed  Google Scholar 

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369: 11–26.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S., 2012. Environmental requirements and habitat preferences of phytoplankton: chance and certainty in species selection. Botanica Marina 55: 1–17.

    Article  Google Scholar 

  • Reynolds, C. S., A. E. Irish & J. A. Elliott, 2001. The ecological basis for simulating phytoplankton responses to environmental change (PROTECH). Ecological Modelling 140: 271–291.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Rodrigues, L. C., B. M. Pivato, L. C. G. Vieira, V. M. Bovo-Scomparin, J. C. Bortolini, A. Pineda & S. Train, 2018. Use of phytoplankton functional groups as a model of spatial and temporal patterns in reservoirs: a case study in a reservoir of central Brazil. Hydrobiologia 805: 147–161.

    Article  Google Scholar 

  • Rojo, C., 2021. Community assembly: perspectives from phytoplankton’s studies. Hydrobiologia 848: 31–52.

    Article  Google Scholar 

  • Rojo, C. & M. Álvarez-Cobelas, 2003. Are there steady-state phytoplankton assemblages in the field? Hydrobiologia 502: 3–12.

    Article  Google Scholar 

  • Round, F. E., R. M. Crawford & D. G. Mann, 1990. Diatoms: Biology and Morphology of the Genera, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rousso, B. Z., E. Bertone, R. Stewart & D. P. Hamilton, 2020. A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes. Water Research 182: 115959.

    Article  CAS  PubMed  Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of planktonic rotifers. Algological Studies/archiv Für Hydrobiologie 8: 71–76.

    Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Article  Google Scholar 

  • Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 336–365.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1965. A Manual of Sea Water Analysis, Fisheries Research Board of Canada Bulletin, Ottawa.

    Google Scholar 

  • Townsend, C., S. Dolédec & M. Scarsbrook, 1997. Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biology 37: 367–387.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Internationalen Vereinigung Für Theoretische Und Angewandte Limnologie Mitteilungen 9: 1–38.

    Article  Google Scholar 

  • Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–122.

    Article  CAS  Google Scholar 

  • Wehr, J. D., R. G. Sheath & J. P. Kociolek, 2015. Freshwater Algae of North America: Ecology and Classification, Elsevier, Academic Press, San Diego.

    Google Scholar 

  • Wilson, A. E., O. Sarnelle & A. R. Tillmanns, 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnology and Oceanography 51: 1915–1924.

    Article  Google Scholar 

  • Wood, S. N., 2004. Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the Royal Statistical Society 99: 673–686.

    Google Scholar 

  • Wood, S. N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73: 3–36.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Limnology Laboratory and Professor William Severi, from the Department of Fisheries and Aquaculture of the Federal Rural University of Pernambuco, for supporting nutrient analysis.

Funding

This work was supported by the Brazilian National Council of Technological and Scientific Development—CNPq, Brazil (Grant Number 305829/2019–0), and Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco—FACEPE, Brazil (Grant Number IBPG-0308–2.03/17).

Author information

Authors and Affiliations

Authors

Contributions

CAA participated in the conceptualization, methodology development, validation, data curation, and formal analysis of all data, wrote the original draft, wrote, reviewed, and edited the final version of the manuscript. ANM participated in the conceptualization, supervision, funding acquisition, methodology of all data, wrote, reviewed, and edited the final version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cihelio Alves Amorim.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Additional information

Handling editor: Luigi Naselli-Flores

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 3653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, C.A., Moura, A.d.N. Habitat templates of phytoplankton functional groups in tropical reservoirs as a tool to understand environmental changes. Hydrobiologia 849, 1095–1113 (2022). https://doi.org/10.1007/s10750-021-04750-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04750-3

Keywords

Navigation