Skip to main content

Advertisement

Log in

Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Habitat structure and predation are major factors that influence the distribution of zooplankton species and functional traits. Here, we analyzed how the structure provided by macrophytes (richness, Shannon’s diversity, and biomass) and potential predation by small-bodied fishes (richness and abundance) determine the richness of species and functional traits of zooplankton, as well as the spatial dissimilarity (beta-diversity) of species and traits. Zooplankton, fish, and macrophytes were simultaneously sampled across a gradient of 30 multi-species macrophyte beds. We assessed spatial patterns of zooplankton under taxonomic and functional approaches, using linear regression models, Generalized Dissimilarity Models, a Structural Equation Model, and a Fourth-Corner Analysis. Zooplankton taxonomic beta-diversity was most represented by the turnover component and zooplankton functional beta-diversity by nestedness. Zooplankton taxonomic richness and taxonomic beta-diversity were positively related to macrophyte biomass, richness, and Shannon’s diversity, whereas zooplankton functional richness and functional beta-diversity were positively related to fish richness and abundance. Macrophyte biomass and diversity oppositely influenced fish structure, which had influence on zooplankton structure. Macrophytes also negatively influenced the zooplankton traits such as body size, reproduction type, habitat, lifespan, and predatory escape response and positively influenced the trait feeding type. Fish were negatively related to the trait body size. The spatial structure generated by macrophyte beds and fish community determined the distribution of zooplankton species and functional traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhurst, D. J., G. B. Jones, M. Clark & A. Reichelt-Brushett, 2017. Effects of fish and macrophytes on phytoplankton and zooplankton community structure in a subtropical freshwater reservoir. Limnologica 62: 5–18.

    Article  CAS  Google Scholar 

  • Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.

    Article  Google Scholar 

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.

    Article  Google Scholar 

  • Baselga, A. & C. D. L. Orme, 2012. Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3: 808–812.

    Article  Google Scholar 

  • Battauz, Y. S., S. B. J. De-Paggi & J. C. Paggi, 2017. Macrophytes as dispersal vectors of zooplankton resting stages in a subtropical riverine floodplain. Aquatic Ecology 51: 191–201.

    Article  CAS  Google Scholar 

  • Bellwood, D. R., T. P. Hughes, C. Folke & M. Nyström, 2004. Confronting the coral reef crisis. Nature 429: 827–833.

    Article  CAS  PubMed  Google Scholar 

  • Bolar, K., 2019. STAT: interactive document for working with basic statistical analysis in R.

  • Bomfim, F. F., L. S. M. Braghin, C. C. Bonecker, & F. A. Lansac-Tôha, 2018. High food availability linked to the dominance of small zooplankton in a subtropical floodplain. International Review of Hydrobiology 103: 26–34.

    Article  Google Scholar 

  • Bomfim, F. F., T. Mantovano, D. C. Amaral, W. S. Palhiarini, C. C. Bonecker, & F. A. Lansac-Tôha, 2017. Adjacent environments contribute to the increase of zooplankton species in a neotropical river. Acta Limnologica Brasiliensia 29: 1–14

    Article  Google Scholar 

  • Bonecker, C. C., F. A. Lansac-Tôha & D. C. Rossa, 1998. Planktonic and non-planktonic rotifers in two environments of the Upper Paraná River floodplain, state of Mato Grosso do Sul, Brazil. Brazilian Archives of Biology and Technology 41: 447–456.

    Article  Google Scholar 

  • Bonecker, C. C., F. De Azevedo & N. R. Simões, 2011. Zooplankton body-size structure and biomass in tropical floodplain lakes: relationship with planktivorous fishes. Acta Limnologica Brasiliensia 23: 217–228.

    Article  Google Scholar 

  • Bonecker, C. C., L. P. Diniz, L. de S. M. Braghin, T. Mantovano, J. V. F. da Silva, F. de F. Bomfim, D. A. Moi, S. Deosti, G. N. T. Dos Santos, D. A. Das Candeias, A. J. de M. M. Mota, L. F. M. Velho & F. A. Lansac-Tôha, 2020. Synergistic effects of natural and anthropogenic impacts on zooplankton diversity in a subtropical floodplain: a long-term study. Oecologia Australis 24: 524–537.

  • Bougeard, S. & S. Dray, 2018. Supervised Multiblock Analysis in R with the ade4 Package. Journal of Statistical Software 86: 1–17.

    Article  Google Scholar 

  • Braghin, L. de S. M., B. de A. Almeida, D. C. Amaral, T. F. Canella, B. C. G. Gimenez & C. C. Bonecker, 2018. Effects of dams decrease zooplankton functional β-diversity in river-associated lakes. Freshwater Biology 63: 721–730.

  • Brito, M. T. da S., J. Heino, U. M. Pozzobom & V. L. Landeiro, 2020. Ecological uniqueness and species richness of zooplankton in subtropical floodplain lakes. Aquatic Sciences 82: 43–56.

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, Body Size and Composition of Plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Carniatto, N., E. R. Cunha, S. M. Thomaz, B. A. Quirino & R. Fugi, 2020. Feeding of fish inhabiting native and non-native macrophyte stands in a Neotropical reservoir. Hydrobiologia 847: 1553–1563.

    Article  Google Scholar 

  • Chase, J. M., P. A. Abrams, J. P. Grover, S. Diehl, P. Chesson, R. D. Holt, S. A. Richards, R. M. Nisbet & T. J. Case, 2002. The interaction between predation and competition: a review and synthesis. Ecology Letters 5: 302–315.

    Article  Google Scholar 

  • Choi, J. Y., K. S. Jeong, S. K. Kim, G. H. La, K. H. Chang & G. J. Joo, 2014. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecological Informatics Elsevier B.V. 24: 177–185.

  • Cribari-Neto, F. & A. Zeileis, 2010. Beta Regression in R. Journal of Statistical Software 34: 1–24.

    Article  Google Scholar 

  • Cunha, E. R., S. M. Thomaz, H. B. Antoniazi Evangelista, J. Carniato, C. F. Souza & R. Fugi, 2011. Small-sized fish assemblages do not differ between a native and a recently established non-indigenous macrophyte in a neotropical ecosystem. Natureza a Conservacao 9: 61–66.

    Article  Google Scholar 

  • Cunha, E. R., K. O. Winemiller, J. C. da Silva, T. M. Lopes, L. C. Gomes, S. M. Thomaz & A. A. Agostinho, 2019. α and β diversity of fishes in relation to a gradient of habitat structural complexity supports the role of environmental filtering in community assembly. Aquatic Sciences 81: 38.

    Article  Google Scholar 

  • Dabés, M. B. G. e S. & L. F. M. Velho, 2001. Assemblage of testate amoebae (Protozoa, Rhizopoda) associated to aquatic macrophytes stands in a marginal lake of the São Francisco river floodplain, Brazil. Acta Scientiarum 23: 291–297.

  • de Sodré, E. O, & R. L. Bozelli, 2019. How planktonic microcrustaceans respond to environment and affect ecosystem: a functional trait perspective. International Aquatic Research 11: 207–223

  • Debastiani-Júnior, J. R., L. M. A. Elmoor-Loureiro & M. G. Nogueira, 2016. Habitat architecture influencing microcrustaceans composition: a case study on freshwater Cladocera (Crustacea Branchiopoda). Brazilian Journal of Biology 76: 93–100.

    Article  Google Scholar 

  • Diehl, S., 1988. Nordic Society Oikos foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214.

    Article  Google Scholar 

  • Dray, S. & P. Legendre, 2008. Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400–3412.

    Article  PubMed  Google Scholar 

  • El-moor-Loreiro, L. M. A., 1997. Manual de Identificação de Cladóceros Límnicos do Brasil. Universa, Brasília.

  • Ferrier, S., G. Manion, J. Elith & K. Richardson, 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13: 252–264.

    Article  Google Scholar 

  • Fitzpatrick, M. C., K. Mokany, G. Manion, M. Lisk, S. Ferrier & D. Nieto-Lugilde, 2020. Generalized Dissimilarity Modeling (GDM) in R.

  • Gagic, V., I. Bartomeus, T. Jonsson, A. Taylor, C. Winqvist, C. Fischer, E. M. Slade, I. Steffan-Dewenter, M. Emmerson, S. G. Potts, T. Tscharntke, W. Weisser & R. Bommarco, 2015. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences 282: 20142620.

    Article  PubMed  Google Scholar 

  • Gower, J. C., 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Article  Google Scholar 

  • Grzybkowska, M., M. Dukowska, J. Leszczyńska, J. Lik, E. Szczerkowska-Majchrzak & M. Przybylski, 2018. The food resources exploitation by small-sized fish in a riverine macrophyte habitat. Ecological Indicators 90: 206–214.

    Article  Google Scholar 

  • Hebert, M.-P., B. E. Beisner & R. Maranger, 2016. A meta-analysis of zooplankton functional traits influencing ecosystem function A meta – analysis of zooplankton functional traits influencing – ecosystem function. Ecology 97: 1069–1080.

    PubMed  Google Scholar 

  • Hébert, M.-P. P., B. E. Beisner & R. Maranger, 2017. Linking zooplankton communities to ecosystem functioning: toward an effect-Trait framework. Journal of Plankton Research 39: 3–12.

    Article  Google Scholar 

  • Heino, J., A. S. Melo & L. M. Bini, 2015a. Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology 60: 223–235.

    Article  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015b. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Article  Google Scholar 

  • Heino, J., J. Alahuhta, S. Fattorini & D. Schmera, 2019. Predicting beta diversity of terrestrial and aquatic beetles using ecogeographical variables: insights from the replacement and richness difference components. Journal of Biogeography 46: 304–315.

    Article  Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García-Alonso, S. L. Amsinck, J. C. Paggi, S. J. de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.

    Article  Google Scholar 

  • Iglesias, C., E. Jeppesen, N. Mazzeo, J. P. Pacheco, F. T. de Mello, F. Landkildehus, C. Fosalba, J. M. Clemente & M. Meerhoff, 2017. Fish but not macroinvertebrates promote trophic cascading effects in high density submersed plant experimental lake food webs in two contrasting climate regions. Water (Switzerland) 9: 514.

    Google Scholar 

  • Koste, W., 1978. Rotatoria die Rädertiere Mitteleuropas begründet von Max Voight. Monogononta, Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • Laliberté, E., P. Legendre & B. Shipley, 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12..

  • Lansac-Tôha, F., C. Bonecker, L. Velho, N. Simões, J. Dias, G. Alves & E. Takahashi, 2009. Biodiversity of zooplankton communities in the Upper Paraná River floodplain: interannual variation from long-term studies. Brazilian Journal of Biology 69: 539–549.

    Article  Google Scholar 

  • Lavorel, S., J. Storkey, R. D. Bardgett, F. De Bello, M. P. Berg, X. Le Roux, M. Moretti, C. Mulder, R. J. Pakeman, S. Díaz & R. Harrington, 2013. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science 24: 942–948.

    Article  Google Scholar 

  • Lefcheck, J. S., 2016. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution 7: 573–579.

    Article  Google Scholar 

  • Legendre, P. & M. De Cáceres, 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16: 951–963.

    Article  PubMed  Google Scholar 

  • Litchman, E., P. de Tezanos Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15–28.

    Article  CAS  Google Scholar 

  • Lopes, C. D. A., A. C. E. A. De Faria, G. I. Manetta & E. Benedito-Cecilio, 2006. Caloric density of aquatic macrophytes in different environments of the Baía river subsystem, Upper Paraná river floodplain, Brazil. Brazilian Archives of Biology and Technology 49: 835–842.

    Article  Google Scholar 

  • Lopes, T. M., E. R. Cunha, J. C. B. Silva, R. D. L. Behrend & L. C. Gomes, 2015. Dense macrophytes influence the horizontal distribution of fish in floodplain lakes. Environmental Biology of Fishes 98: 1741–1755.

    Article  Google Scholar 

  • Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman & D. A. Wardle, 2001. Ecology: biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–808.

    Article  CAS  PubMed  Google Scholar 

  • Magurran, A., 2004. Measuring Biological Diversity. Blackwell Science Ltd, a Blackwell Publishing company, Malden.

  • Maire, E., G. Grenouillet, S. Brosse & S. Villéger, 2015. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography 24: 728–740.

    Article  Google Scholar 

  • Mason, N. W. H., D. Mouillot, W. G. Lee & J. B. Wilson, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118.

    Article  Google Scholar 

  • Meerhoff, M., C. Fosalba, C. Bruzzone, N. Mazzeo, W. Noordoven & E. Jeppesen, 2006. An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology 51: 1320–1330.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. T. de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007a. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. T. De Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007b. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Mouillot, D., N. A. J. Graham, S. Villéger, N. W. H. Mason & D. R. Bellwood, 2013. A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution 28: 167–177.

    Article  PubMed  Google Scholar 

  • Naeem, S., J. E. Duffy & E. Zavaleta, 2012. The functions of biological diversity in an age of extinction. Science 336: 1401–1406.

    Article  CAS  PubMed  Google Scholar 

  • Obertegger, U. & G. Flaim, 2018. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly? Hydrobiologia 823: 79–91.

    Article  Google Scholar 

  • Orlova-Bienkoswskaja, M. J., 2001. Cladocera: Anomopoda - Daphniidae: genus Simocephalus. Guides to the identification of the Microinvertebrates of Continental waters of the world. Backhuys Publishers.

  • Ota, R. R., G. de C. Deprá, W. J. da Graça & C. S. Pavanelli, 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotropical Ichthyology 16: 1–111.

  • Paradis, E. & K. Schliep, 2018. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526–528.

    Article  Google Scholar 

  • Perbiche-Neves, G., G. A. Boxshall, D. Previattelli, M. G. Nogueira & C. E. F. da Rocha, 2015. Identification guide to some Diaptomid species (Crustacea, Copepoda, Calanoida, Diaptomidae) of “de la Plata” River Basin (South America). ZooKeys 111: 1–111.

    Article  Google Scholar 

  • Petchey, O. L., A. Hector & K. J. Gaston, 2004. How do different measures of functional diversity perform? Ecology 85: 847–857.

    Article  Google Scholar 

  • Pinheiro, D. T., J. Max, S. Corrêa, C. S. Chaves, D. Patrick, F. Campos, S. Cristina & D. M. Zacardi, 2016. Distribution and ichthyofauna diversity associated with aquatic macrophytes bank of an Amazon floodplain lake, Pará State, Brazil. Acta of Fisheries and Aquatic Resources 4: 59–70.

    Google Scholar 

  • R Core Team, 2020. A language and environment for statistical computing. Vienna, Austria. https://www.r-project.org.

  • Reid, J. W., 1985. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boletim de Zoologia 9: 17.

    Article  Google Scholar 

  • Rizo, E. Z. C., Y. Gu, R. D. S. Papa, H. J. Dumont & B. Han, 2017. Identifying functional groups and ecological roles of tropical and subtropical freshwater Cladocera in Asia. Hydrobiologia 799: 83–99.

    Article  Google Scholar 

  • Rodrigues, L., S. Train, V. Bovo-Scomparin, S. Jati, C. Borsalli & E. Marengoni, 2009. Interannual variability of phytoplankton in the main rivers of the Upper Paraná River floodplain, Brazil: influence of upstream reservoirs. Brazilian Journal of Biology 69: 501–516.

    Article  CAS  Google Scholar 

  • Rossa, D. C. & C. C. Bonecker, 2003. Abundance of planktonic and non-planktonic rotifers in floodplain lakes of the Upper Paraná River floodplain. Amazoniana 17: 567–581.

    Google Scholar 

  • Sagrario, G., M. De Los Ángeles, E. Balseiro, R. Ituarte & E. Spivak, 2009. Macrophytes as refuge or risky area for zooplankton: a balance set by littoral predacious macroinvertebrates. Freshwater Biology 54: 1042–1053.

    Article  Google Scholar 

  • Santangelo, J. M., B. N. Soares, T. Paes, P. Maia-Barbosa, R. Tollrian & R. L. Bozelli, 2018. Effects of vertebrate and invertebrate predators on the life history of Daphnia similis and Moina macrocopa (Crustacea: Cladocera). Annales de Limnologie - International Journal of Limnology 54: 25.

    Article  Google Scholar 

  • Santos, N. G., L. R. Stephan, A. Otero, C. Iglesias & M. S. M. Castilho-Noll, 2020. How free-floating macrophytes influence interactions between planktivorous fish and zooplankton in tropical environments? An in-lake mesocosm approach. Hydrobiologia 847: 1357–1370.

    Article  Google Scholar 

  • Serafim-Júnior, M., F. A. Lansac-Tôha, R. M. Lopes & G. Perbiche-Neves, 2016. Continuity effects on rotifers and microcrustaceans caused by the construction of a downstream reservoir in a cascade series (Iguaçu River, Brazil). Brazilian Journal of Biology 76: 279–291.

    Article  Google Scholar 

  • Souza, D. C., E. R. Cunha, R. de A. Murillo, M. J. Silveira, M. M. Pulzatto, M. S. Dainez-Filho, L. A. Lolis, & S. M. Thomaz, 2017. Species inventory of aquatic macrophytes in the last undammed stretch of the Upper Parana River, Brazil. Acta Limnologica Brasiliensia 29: e115

  • Stephan, L. R., B. E. Beisner, S. G. M. Oliveira & M. S. M. Castilho-Noll, 2019. Influence of Eichhornia crassipes (Mart) solms on a tropical microcrustacean community based on taxonomic and functional trait diversity. Water (Switzerland) 11: 1–16.

    Google Scholar 

  • Strzałek, M. & P. Koperski, 2019. The effect of dense patches of Stratiotes aloides L. on the spatial structure of microcrustacean assemblages in an oxbow lake. Ecohydrology and Hydrobiology European Regional Centre for Ecohydrology of the Polish Academy of Sciences 19: 75–82.

    Google Scholar 

  • Suding, K. N., S. Lavorel, F. S. Chapin, J. H. C. Cornelissen, S. Díaz, E. Garnier, D. Goldberg, D. U. Hooper, S. T. Jackson & M. L. Navas, 2008. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology 14: 1125–1140.

    Article  Google Scholar 

  • ter Braak, C., A. Cormont & S. Dray, 2012. Improved testing of species traits-environment relationships in the fourth corner problem. Ecology 93: 1525–1526.

    Article  PubMed  Google Scholar 

  • Tews, J., U. Brose, V. Grimm, K. Tielborger, M. C. Wichmann, M. Schwager & F. Jeltsch, 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79–92.

    Article  Google Scholar 

  • Thomaz, S. M. & E. R. da Cunha, 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22: 218–236.

    Article  Google Scholar 

  • Villéger, S., N. W. H. Mason & D. Mouillot, 2008. New Multidimensional Functional Diversity Indices for a Multifaceted Framework in Functional Ecology. Ecology 89: 2290–2301.

    Article  PubMed  Google Scholar 

  • Villéger, S., G. Grenouillet & S. Brosse, 2013. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography 22: 671–681.

    Article  Google Scholar 

  • Waldbusser, G. G., R. L. Marinelli, R. B. Whitlatch & P. T. Visscher, 2004. The effects of infaunal biodiversity on biogeochemistry of coastal marine sediments. Limnology and Oceanography 49: 1482–1492.

    Article  CAS  Google Scholar 

  • Warfe, D. M. & L. A. Barmuta, 2006. Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community. Oecologia 150: 141–154.

    Article  PubMed  Google Scholar 

  • Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.

    Article  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses. Springer, Verlag.

    Book  Google Scholar 

  • Zeng, L., B. Liu, Z. Dai, Q. Zhou, L. Kong, Y. Zhang, F. He & Z. Wu, 2017. Analyzing the effects of four submerged macrophytes with two contrasting architectures on zooplankton: a mesocosm experiment. Journal of Limnology 76: 581–590.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian Council of Research (CNPq) and the Coordination for the Improvement of Higher Education Personnel (CAPES) for financial support and infrastructure for developing this study. S. Deosti, F. F. Bomfim, F. M. Lansac-Tôha, B. A. Quirino, C. C. Bonecker, and F. A. Lansac-Tôha acknowledge the Brazilian Council of Research (CNPq and CAPES) for providing grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francieli de Fátima Bomfim.

Additional information

Handling editor: Eric R. Larson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deosti, S., de Fátima Bomfim, F., Lansac-Tôha, F.M. et al. Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river. Hydrobiologia 848, 1475–1490 (2021). https://doi.org/10.1007/s10750-021-04527-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04527-8

Keywords

Navigation