Skip to main content
Log in

Fatty acids reveal the importance of autochthonous non-vascular plant inputs to an austral river food web

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We hypothesised that the dominant organic source supporting macroinvertebrate consumers in a South African river is autochthonously produced non-vascular algae (regardless of season), and that the prevalence of autochthony increases with increasing distance from the headwaters. Fatty acid profiles of macroinvertebrates from six sites and four sample times were assessed to characterise the consumer diets and estimate the relative assimilation of autochthonous versus allochthonous-based sources in the food web. Fatty acid markers, ordination analyses and mixing models confirmed that the ultimate nutritional source for the invertebrate assemblages was autochthonous-produced carbon, with some contributions occurring from vascular plants (potentially of allochthonous and autochthonous origin, as some vascular plants were aquatic macrophytes). However, contrary to our second hypothesis, the prevalence of autochthony did not change predictably along the river. Such an autochthonous-based food web is consistent with many large rivers in well-researched regions of the world, although the complexity and variability that we observed in the fatty acid profiles of macroinvertebrate consumers in a small South African river should help stimulate renewed interest in investigations of carbon flow within small rivers from less-studied regions (particularly in arid climates).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahlgren, G., T. Vrede & W. Goedkoop, 2009. Fatty acid ratios in freshwater fish, zooplankton and zoobenthos – are there specific optima? In Kainz, M., M. T. Brett & M. T. Arts (eds), Lipids in Aquatic Ecosystems. Springer, New York: 147–178.

    Chapter  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer, Dordrecht.

    Book  Google Scholar 

  • Arce-Funck, J., A. Bec, F. Perrière, V. Felten & M. Danger, 2015. Aquatic hyphomycetes: a potential source of polyunsaturated fatty acids in detritus-based stream food webs. Fungal Ecology 13: 205–210.

    Article  Google Scholar 

  • Bell, M. V. & D. R. Tocher, 2009. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: general pathways and new directions. In Kainz, M., M. T. Brett & M. T. Arts (eds), Lipids in Aquatic Ecosystems. Springer, New York: 211–236.

    Chapter  Google Scholar 

  • Budge, S. M., S. J. Iverson & H. N. Koopman, 2006. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Marine Mammal Science 22: 759–801.

    Article  Google Scholar 

  • Brett, M. T., D. Müller-Navarra, A. P. Ballantyne, J. L. Ravet & C. R. Goldman, 2006. Daphnia fatty acid composition reflects that of their diet. Limnology and Oceanography 51: 2428–2437.

    Article  CAS  Google Scholar 

  • Brett, M. T., M. Kainz, S. J. Taipale & H. Seshan, 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proceedings of the National Academy of Sciences of the United States of America 106: 21197–21201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brett, M. T., M. E. Eisenlord & A. W. E. Galloway, 2016. Using multiple tracers and directly accounting for trophic modification improves dietary mixing-model performance. Ecosphere 7(8): e01440.

    Article  Google Scholar 

  • Bunn, S. E., P. M. Davies & M. Winning, 2003. Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology 48: 619–635.

    Article  Google Scholar 

  • Butler, J. L., M. A. Williams, P. J. Bottomley & D. D. Myrold, 2003. Microbial community dynamics associated with rhizosphere carbon flow. Applied and Environmental Microbiology 69: 6793–6800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carassou, L., A. K. Whitfield, L. Bergamino, S. Moyo & N. B. Richoux, 2016. Trophic dynamics of the Cape Stumpnose (Rhabdosargus holubi, Sparidae) across three adjacent aquatic habitats. Estuaries and Coasts 39(4): 1221–1233.

    Article  CAS  Google Scholar 

  • Chutter, F., 1994. The rapid biological assessment of streams and river water quality by means of macroinvertebrate communities in South Africa. Water Research Commission, Pretoria.

    Google Scholar 

  • Cole, J. J., S. R. Carpenter, M. L. Pace, M. C. Van de Bogert, J. L. Kitchell & J. R. Hodgson, 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecology Letters 9: 558–568.

    Article  PubMed  Google Scholar 

  • Dalsgaard, J., M. St, G. John, D. Müller-Navarra Kattner & W. Hagen, 2003. Fatty acid trophic markers in the pelagic marine environment. In Southward, A. J., P. A. Tyler, C. M. Young & L. A. Fuiman (eds), Advances in Marine Biology. Academic Press, New York: 225–340.

    Google Scholar 

  • Dalu, T., P. W. Froneman & N. B. Richoux, 2014. Phytoplankton community diversity along a river-estuary continuum. Transactions of the Royal Society of South Africa 69: 107–116.

    Article  Google Scholar 

  • Dalu, T., N. B. Richoux & P. W. Froneman, 2016. Nature and source of suspended particulate matter and detritus along an austral temperate river–estuary continuum, assessed using stable isotope analysis. Hydrobiologia 767: 95–110.

    Article  Google Scholar 

  • De Lange, H. J. & N. W. van den Brink, 2006. Literature review of available techniques to characterize marine and estuarine food webs, with emphasis for application in the model OMEGA. Alterra Wageningen UR, Wageningen: 1–56.

  • de Moor, I. J., J. A. Day & F. C. de Moor, 2003. Guides to the Freshwater Invertebrates of Southern Africa. Water Research Commission, South Africa.

    Google Scholar 

  • Delong, M. D. & J. H. Thorp, 2006. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147: 76–85.

    Article  PubMed  Google Scholar 

  • Descroix, A., A. Bec, G. Bourdier, D. Sargos, J. Sauvanet, B. Misson & C. Desvilettes, 2010. Fatty acids as biomarkers to indicate main carbon sources of four major invertebrate families in a large River (the Allier, France). Fundamental and Applied Limnology/Archiv für Hydrobiologie 177: 39–55.

    Article  CAS  Google Scholar 

  • Desvilettes, C., G. Bourdier, J. C. Breton & P. Combrouze, 1994. Fatty acids as organic markers for the study of trophic relationships in littoral cladoceran communities of a pond. Journal of Plankton Research 16: 643–659.

    Article  Google Scholar 

  • Dethier, M. N., E. Sosik, A. W. E. Galloway, D. O. Duggins & C. A. Simenstad, 2013. Addressing assumptions: variation in stable isotopes and fatty acids of marine macrophytes can confound conclusions of food web studies. Marine Ecology Progress Series 478: 1–14.

    Article  CAS  Google Scholar 

  • Doi, H., 2009. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Population Ecology 51: 57–64.

    Article  Google Scholar 

  • Finlay, J. C., 2001. Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82: 1052–1064.

    Google Scholar 

  • Galloway, A. W. E., S. J. Taipale, M. Hiltunen, E. Peltomaa, U. Strandberg, M. T. Brett & P. Kankaala, 2014. Diet-specific biomarkers show that high-quality phytoplankton fuels herbivorous zooplankton in large boreal lakes. Freshwater Biology 59: 1902–1915.

    Article  Google Scholar 

  • Gerber, A. & M. J. M. Gabriel, 2002. Aquatic Invertebrates of South African Rivers: Field Guide. Institute for Water Quality Studies, Pretoria.

    Google Scholar 

  • Hayden, B., S. M. McWilliam-Hughes & R. A. Cunjak, 2016. Evidence for limited trophic transfer of allochthonous energy in temperate river food webs. Freshwater Science 35: 544–558.

    Article  Google Scholar 

  • Hicks, B. J., 1997. Food webs in forest and pasture streams in the Waikato region, New Zealand: A study based on analyses of stable isotopes of carbon and nitrogen, and fish gut contents. New Zealand Journal of Marine and Freshwater Research 31: 651–664.

    Article  Google Scholar 

  • Honeyfield, D. C. & K. O. Maloney, 2015. Seasonal patterns in stream periphyton fatty acids and community benthic algal composition in six high-quality headwater streams. Hydrobiologia 744: 35–47.

    Article  CAS  Google Scholar 

  • Indarti, E., M. I. A. Majid, R. Hashim & A. Chong, 2005. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. Journal of Food Composition and Analysis 18: 161–170.

    Article  CAS  Google Scholar 

  • Jones, R. I., J. Grey, D. Sleep & C. Quarmby, 1998. An assessment, using stable isotopes, of the importance of allochthonous organic carbon sources to the pelagic food web in Loch Ness. Proceedings of the Royal Society B: Biological Sciences 265: 105–110.

    Article  PubMed Central  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. In Dodge, D. P. (ed), Proceedings of the International Large Rivers Symposium. Canadian Special Publication in Fisheries and Aquatic Sciences, Ottawa: 110–127.

  • Lau, D. C. P., K. M. Y. Leung & D. Dudgeon, 2009. Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society 28: 426–439.

    Article  Google Scholar 

  • Lau, D. C. P., W. Goedkoop & T. Vrede, 2013. Cross-ecosystem differences in lipid composition and growth limitation of a benthic generalist consumer. Limnology and Oceanography 58: 1149–1164.

    Article  CAS  Google Scholar 

  • Li, A. O. Y. & D. Dudgeon, 2008. Food resources of shredders and other benthic macroinvertebrates in relation to shading conditions in tropical Hong Kong streams. Freshwater Biology 53: 2011–2025.

    Article  Google Scholar 

  • Marcarelli, A. M., C. V. Baxter, M. M. Mineau & R. O. Hall, 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92: 1215–1225.

    Article  PubMed  Google Scholar 

  • March, J. G. & C. M. Pringle, 2003. Food web structure and basal resource utilization along a tropical island stream continuum, Puerto Rico. Biotropica 35: 84–93.

    Article  Google Scholar 

  • McNeely, C., J. C. Finlay & M. E. Power, 2007. Grazer traits, competition, and carbon sources to a headwater-stream food web. Ecology 88: 391–401.

    Article  PubMed  Google Scholar 

  • McWilliam-Hughes, S. M., T. D. Jardine & R. A. Cunjak, 2009. Instream C sources for primary consumers in two temperate, oligotrophic rivers: possible evidence of bryophytes as a food source. Journal of the North American Benthological Society 28: 733–743.

  • Mihuc, T. & D. Toetz, 1994. Determination of diets of alpine aquatic insects using stable isotopes and gut analysis. American Midland Naturalist 131: 146–155.

  • Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing & R. L. Vannote, 1983. Interbiome comparison of stream ecosystem dynamics. Ecological Monographs 53: 2–25.

    Article  Google Scholar 

  • Mortillaro, J.-M., F. Rigal, H. Rybarczyk, M. Bernardes, G. Abril & T. Meziane, 2012. Particulate organic matter distribution along the lower amazon river: addressing aquatic ecology concepts using fatty acids. PLoS ONE 7: e46141.

  • Mulholland, P. J., J. L. Tank, D. M. Sanzone, W. M. Wollheim, B. J. Peterson, J. R. Webster & J. L. Meyer, 2000. Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15 N tracer addition. Journal of the North American Benthological Society 19: 145–157.

    Article  Google Scholar 

  • Phillips, D. L., R. Inger, S. Bearhop, A. L. Jackson, J. W. Moore, A. C. Parnell, B. X. Semmens & E. J. Ward, 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92: 823–835.

    Article  Google Scholar 

  • Pingram, M. A., K. J. Collier, D. P. Hamilton, B. O. David & B. J. Hicks, 2012. Carbon sources supporting large river food webs: a review of ecological theories and evidence from stable isotopes. Freshwater Reviews 5: 85–103.

    Article  Google Scholar 

  • Pingram, M. A., K. J. Collier, D. P. Hamilton, B. J. Hicks & B. O. David, 2014. Spatial and temporal patterns of carbon flow in a temperate, large river food web. Hydrobiologia 729: 107–131.

    Article  CAS  Google Scholar 

  • Richoux, N. B. & R. T. Ndhlovu, 2014. Temporal variability in the isotopic niches of rocky shore grazers and suspension-feeders. Marine Ecology 161: 2199–2211.

    CAS  Google Scholar 

  • Saunders, W. C. & K. D. Fausch, 2007. Improved grazing management increases terrestrial invertebrate inputs that feed trout in Wyoming rangeland streams. Transactions of the American Fisheries Society 136: 1216–1230.

    Article  Google Scholar 

  • Stock, B. C. & B. X. Semmens, 2013. MixSIAR GUI User Manual. Version 3.1., https://github.com/brianstock/MixSIAR.

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305–308.

    Article  Google Scholar 

  • Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.

    Article  Google Scholar 

  • Tockner, K., F. Malard & J. V. Ward, 2000. An extension of the flood pulse concept. Hydrological Processes 14: 2861–2883.

    Article  Google Scholar 

  • Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. Journal of the North American Benthological Society 26: 509–522.

    Article  Google Scholar 

  • Torres-Ruiz, M. & J. D. Wehr, 2010. Changes in the nutritional quality of decaying leaf litter in a stream based on fatty acid content. Hydrobiologia 651: 265–278.

    Article  CAS  Google Scholar 

  • Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2010. Are net-spinning caddisflies what they eat? An investigation using controlled diets and fatty acids. Journal of the North American Benthological Society 29: 803–813.

    Article  Google Scholar 

  • Vannote, R. L., K. W. Cummins & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Wang, J., B. Gu, J. Huang, X. Han, G. Lin, F. Zheng & Y. Li, 2014. Terrestrial contributions to the aquatic food web in the middle Yangtze River. PLoS ONE 9: e102473.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wantzen, K. M., W. J. Junk & K. O. Rothhaupt, 2008. An extension of the floodpulse concept (FPC) for lakes. In Wantzen, K. M., K.-O. Rothhaupt, M. Mörtl, M. Cantonati, L. G.- Tóth & P. Fischer (eds), Ecological Effects of Water-Level Fluctuations in Lakes. Springer, Dordrecht: 151–170.

    Chapter  Google Scholar 

  • Zah, R., P. Burgherr, S. M. Bernasconi & U. Uehlinger, 2001. Stable isotope analysis of macroinvertebrates and their food sources in a glacier stream. Freshwater Biology 46: 871–882.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.D. Chari, L. Sikutshwa and S. Gininda for their assistance in the field, J. Peters and B. Hubbart for their technical assistance, T. Dalu for providing fatty acid data for some of the basal sources, and M.H. Villet for inputs on study design and site selection. This research was funded by the Water Research Commission of South Africa, the National Research Foundation of South Africa and Rhodes University. Opinions, findings and conclusions expressed in this material are solely of the authors and do not necessarily reflect the views of the funding bodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sydney Moyo.

Additional information

Handling editor: Marcelo S. Moretti

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyo, S., Richoux, N.B. Fatty acids reveal the importance of autochthonous non-vascular plant inputs to an austral river food web. Hydrobiologia 806, 139–156 (2018). https://doi.org/10.1007/s10750-017-3347-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3347-4

Keywords

Navigation