Skip to main content
Log in

Changes in the nutritional quality of decaying leaf litter in a stream based on fatty acid content

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We examined the nutritional quality of decaying leaf litter in a third-order forested stream, using measurements of fatty acid (FA) composition over time. We measured changes in concentrations of total, polyunsaturated, microalgal, and microbial marker FAs in mixed-species leaf packs in spring and autumn and effects of including/excluding macroinvertebrates. Initial concentrations of total FAs in litter were significantly less in spring (5.2 mg/g) than in autumn (6.9 mg/g; F = 6.3; P = 0.03), but total FA concentrations in litter placed in the stream declined significantly over 120 days in both spring (62%; F = 10.9; P < 0.001) and autumn (56%; F = 19.4; P = 0.0001). Quantities of most FAs declined at a greater rate than that of bulk leaf matter. The presence or absence of macroinvertebrates (5 mm vs. 250 μm mesh) had no effect on FA concentration or composition of decomposing litter. Omega-3 polyunsaturated FAs were either nearly absent (20:5ω3) or depleted preferentially over other FAs (18:3ω3). During decomposition the polyunsaturated FA linoleic acid (18:2ω6, common in fungi), declined in concentration more rapidly than other FAs in the spring, but in autumn declined at slower rates, perhaps suggesting greater fungal activity in autumn. Quantities of bacterial (e.g., 16:1ω7) and fungal (e.g., 18:1ω9) FA markers increased over time in autumn (and 16:1ω7 also in spring). Our data provide no evidence for increasing nutritional FA quality of litter during decay and microbial colonization, based on total and polyunsaturated FAs, despite measured increases in bacterial and fungal FA over time. Routine measurements of FA composition of litter could provide insights into the nutrition of allochthonous matter and the importance of fungi and bacteria during decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahlgren, G., I. B. Gustafsson & M. Boberg, 1992. Fatty acid content and chemical composition of freshwater microalgae. Journal of Phycology 28: 37–50.

    Article  CAS  Google Scholar 

  • Allan, J. D., 1995. Stream Ecology: Structure and Function of Running Waters. Springer, London, UK.

    Google Scholar 

  • Arts, M. T., R. G. Ackman & B. J. Holub, 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Canadian Journal of Fisheries and Aquatic Sciences 58: 122–137.

    Article  CAS  Google Scholar 

  • Barlocher, F. & B. Kendrick, 1974. Dynamics of the fungal population on leaves in a stream. Journal of Ecology 62: 761–791.

    Article  Google Scholar 

  • Barlocher, F. & B. Kendrick, 1975. Assimilation efficiency of Gammarus pseudolimnaeus (Amphipoda) feeding on fungal mycelium or autumn shed leaves. Oikos 26: 55–59.

    Article  Google Scholar 

  • Boulton, A. J. & P. I. Boon, 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over and old leaf? Australian Journal of Marine and Freshwater Research 42: 1–43.

    Article  CAS  Google Scholar 

  • Brett, M. T. & D. C. Mueller-Navarra, 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology 38: 483–499.

    Article  CAS  Google Scholar 

  • Bridson, J. N., 1985. Lipid fraction in forest litter early stages of decomposition. Soil Biology and Biochemistry 17: 285–290.

    Article  CAS  Google Scholar 

  • Cargill, A. S., K. W. Cummins, B. J. Hanson & R. R. Lowry, 1985a. The role of lipids, fungi and temperature in the nutrition of a shredder caddisfly Clistoronia magnifica. Freshwater Invertebrate Biology 4: 64–78.

    Article  Google Scholar 

  • Cargill, A. S., K. W. Cummins, K. W. Hanson & R. R. Lowry, 1985b. The role of lipids as feeding stimulants for shredding aquatic insects. Freshwater Biology 15: 455–464.

    Article  CAS  Google Scholar 

  • Cooney, J. J., M. M. Doolittle, O. Grahl-Nielsen, I. M. Haaland & P. W. Kirk Jr., 1993. Comparison of fatty acids of marine fungi using multivariate statistical analysis. Journal of Industrial Microbiology 12: 373–378.

    Article  CAS  Google Scholar 

  • Cummins, K. W., 1974. Structure and function of stream ecosystems. BioScience 24: 631–641.

    Article  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • Desvilettes, C., G. Bourdier & J.-C. Breton, 1994. Lipid class and fatty acid composition of planktivorous larval pike Esox lucius living in a natural pond. Aquatic Living Resources 7: 67–77.

    Article  Google Scholar 

  • Desvilettes, C., G. Bourdier, C. Amblard & B. Barth, 1997. Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshwater Biology 38: 629–637.

    Article  CAS  Google Scholar 

  • Dunstan, G. A., J. K. Volkman, S. M. Barrett, J.-M. Leroi & S. W. Jeffrey, 1994. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35: 155–161.

    Article  CAS  Google Scholar 

  • Eggert, S. L. & J. B. Wallace, 2003. Litter breakdown and invertebrate detritivores in a resource-depleted Appalachian stream. Archiv fuer Hydrobiologie 156: 315–338.

    Google Scholar 

  • Findlay, S. E. G. & T. L. Arsuffi, 1989. Microbial growth and detritus transformations during decomposition of leaf litter in a stream. Freshwater Biology 21: 261–269.

    Article  Google Scholar 

  • Fuller, R. L. & T. J. Fry, 1991. The influence of temperature and food quality on the growth of Hydropsyche betteni (Trichoptera) and Simulium vittatum (Diptera). Journal of Freshwater Ecology 6: 75–86.

    Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.

    Article  Google Scholar 

  • Gulis, V. & K. Suberkropp, 2003. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquatic Microbial Ecology 30: 149–157.

    Article  Google Scholar 

  • Hunter, M. D., S. Adl, C. M. Pringle & D. C. Coleman, 2003. Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia 47: 101–115.

    Article  CAS  Google Scholar 

  • Kharlamenko, V. I., N. V. Zhukova, S. V. Khotimchenko, V. I. Svetashev & G. M. Kamenev, 1995. Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series 120: 231–241.

    Article  CAS  Google Scholar 

  • Killingbeck, K. T., 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716–1727.

    Article  Google Scholar 

  • Kominoski, J. S., T. J. Hoellein, J. J. Kelly & C. M. Pringle, 2009. Does mixing litter of different qualities alter stream microbial diversity and functioning on individual litter species? Oikos 118: 457–463.

    Article  Google Scholar 

  • Matthews, B. & A. Mazumder, 2006. Habitat specialization and the exploitation of allochthonous carbon by zooplankton. Ecology 87: 2800–2812.

    Article  PubMed  Google Scholar 

  • McMahon, S. K., M. A. Williams, P. J. Bottomley & D. D. Myrold, 2005. Dynamics of microbial communities during decomposition of carbon-13 labeled ryegrass fractions in soil. Soil Science Society of America Journal 69: 1238–1247.

    Article  CAS  Google Scholar 

  • Merzlyak, M. N. & G. A. F. Hendry, 1993. Free radical metabolism, pigment degradation and lipid peroxidation in leaves during senescence. Proceedings of the Royal Society of Edinburgh Section B 102: 459–471.

    CAS  Google Scholar 

  • Methvin, B. R. & K. Suberkropp, 2003. Annual production of leaf-decaying fungi in 2 streams. Journal of the North American Benthological Society 22: 554–564.

    Article  Google Scholar 

  • Mfilinge, P. L., T. Meziane, Z. Bachok & M. Tsuchiya, 2003. Fatty acids in decomposing mangrove leaves: microbial activity, decay and nutritional quality. Marine Ecology Progress Series 265: 97–105.

    Article  CAS  Google Scholar 

  • Mills, G. L., J. V. McArthur, C. Wolfe, J. M. Aho & R. B. Rader, 2001. Changes in fatty acid and hydrocarbon composition of leaves during decomposition in a southeastern blackwater stream. Archiv fuer Hydrobiologie 152: 315–328.

    CAS  Google Scholar 

  • Muller-Navarra, D. C., M. T. Brett, A. M. Liston & C. R. Goldman, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.

    Article  CAS  PubMed  Google Scholar 

  • Napolitano, G. E., 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems. In Arts, M. T. & B. C. Wainman (eds), Lipids in Freshwater Ecosystems. Springer, New York, NY: 21–44.

    Google Scholar 

  • Parrish, C. C., 1999. Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In Arts, M. T. & B. C. Wainman (eds), Lipids in Freshwater Ecosystems. Springer, New York, NY: 4–20.

    Google Scholar 

  • Pollero, R. J., R. R. Brenner & E. G. Gros, 1981. Seasonal changes in lipid and fatty acid composition of the fresh water mollusk Diplodon patagonicus. Lipids 16: 109–113.

    Article  CAS  Google Scholar 

  • Ruess, L., M. M. Haggblom, E. J. Garcia Zapata & J. Dighton, 2002. Fatty acids of fungi and nematodes: possible biomarkers in the soil food chain? Soil Biology and Biochemistry 34: 745–756.

    Article  CAS  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry, 3rd ed. Freeman and Company, New York, NY.

    Google Scholar 

  • Sponseller, R. A. & E. F. Benfield, 2001. Influences of land use on leaf breakdown in southern Appalachian headwater streams: a multiple-scale analysis. Journal of the North American Benthological Society 20: 44–59.

    Article  Google Scholar 

  • Stahl, P. D. & M. J. Klug, 1996. Characterization and differentiation of filamentous fungi based on fatty acid composition. Applied and Environmental Microbiology 62: 4136–4146.

    CAS  PubMed  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry. The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Suberkropp, K., 1984. Effect of temperature on seasonal occurrence of aquatic hyphomycetes. Transactions of the British Mycological Society 82: 53–62.

    Article  Google Scholar 

  • Suberkropp, K., 1997. Annual production of leaf-decaying fungi in a woodland stream. Freshwater Biology 38: 169–178.

    Article  Google Scholar 

  • Suberkropp, K., 2003. Methods for examining interactions between freshwater fungi and macroinvertebrates. Fungal Diversity Research Series 10: 159–171.

    Google Scholar 

  • Suberkropp, K., G. L. Godshalk & M. J. Klug, 1976. Changes in the chemical composition of leaves during processing in a woodland stream. Ecology 57: 720–727.

    Article  CAS  Google Scholar 

  • Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. Journal of the North American Benthological Society 26: 509–522.

    Article  Google Scholar 

  • Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2010. Are net-spinning caddisflies what they eat? An investigation using controlled diets and fatty acids. Journal of the North American Benthological Society 29 (in press).

  • Triska, F. J. & J. R. Sedell, 1976. Decomposition of 4 species of leaf litter in response to nitrate manipulation. Ecology 57: 783–792.

    Article  CAS  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.

    Article  Google Scholar 

  • Weyers, H. S. & K. Suberkropp, 1996. Fungal and bacterial production during the breakdown of yellow poplar leaves in 2 streams. Journal of the North American Benthological Society 15: 408–420.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Fordham University, The Louis Calder Center, and the New York State Biodiversity Research Institute for funding. We thank Barrett Gaylord for assistance with field collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Torres-Ruiz.

Additional information

Handling editor: M. Power

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Ruiz, M., Wehr, J.D. Changes in the nutritional quality of decaying leaf litter in a stream based on fatty acid content. Hydrobiologia 651, 265–278 (2010). https://doi.org/10.1007/s10750-010-0305-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0305-9

Keywords

Navigation