Skip to main content

Advertisement

Log in

Different short-term responses of greenhouse gas fluxes from salt marsh mesocosms to simulated global change drivers

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Salt marshes are valued as important greenhouse gas (GHG) sinks, but global changes in climate, nitrogen (N) pollution, and exotic species invasion may alter this marsh function. With the goal of better understanding the potential responses of coastal marsh GHG fluxes to interacting global changes, a multifactorial experiment was conducted. Two climate treatments (present-day and end-of-century temperatures and carbon dioxide (CO2) concentrations) and two N treatments (non-enriched and simulated eutrophic estuary conditions) were applied to mesocosms containing either invasive Phragmites australis (Cav. Trin. Ex Steud.) or native Spartina patens (Aiton) Muhl. vegetated soil cores. Fluxes of CO2, methane (CH4), and nitrous oxide (N2O) were measured in each mesocosm before and after treatment using cavity ring-down spectrometry, along with vegetation growth, edaphic conditions, and pore water chemistry. Methane emissions increased in P. australis but not in S. patens mesocosms under climate change conditions, while CO2 fluxes were similar between vegetation types and treatments. Nitrous oxide emissions increased with N loading from both S. patens and P. australis mesocosms, but were decreased in N-enriched S. patens mesocosms under climate change conditions. These findings demonstrate complex GHG flux responses to global change and suggest the potential for vegetation community-specific responses, though further research is needed to test mechanisms underlying observed GHG flux patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armstrong, J. & W. Armstrong, 1991. A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquatic Botany 39: 75–88.

    Article  Google Scholar 

  • Bertness, M. D., 1991. Zonation of Spartina patens and Spartina alterniflora in a New England. Salt Marsh. Ecology 72: 138.

    Article  Google Scholar 

  • Bertness, M. D., P. J. Ewanchuk & B. R. Silliman, 2002. Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences 99: 1395–1398.

    Article  CAS  Google Scholar 

  • Brix, H., B. K. Sorrell & H. H. Schierup, 1996. Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquatic Botany 54: 151–163.

    Article  Google Scholar 

  • Burke, D. J., E. P. Hamerlynck & D. Hahn, 2002. Interactions among plant species and microorganisms in salt marsh sediments. Applied and Environmental Microbiology 68: 1157–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers, R. M., L. A. Meyerson & K. Saltonstall, 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64: 261–273.

    Article  Google Scholar 

  • Chambers, R. M., T. J. Mozdzer & J. C. Ambrose, 1998. Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. Aquatic Botany 62: 161–169.

    Article  CAS  Google Scholar 

  • Chmura, G. L., S. C. Anisfeld, D. R. Cahoon & J. C. Lynch, 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 4.

    Article  Google Scholar 

  • Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14: 454–458.

    Article  CAS  Google Scholar 

  • Colmer, T. D., 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant, Cell and Environment 26: 17–36.

    Article  CAS  Google Scholar 

  • Dunfield, P., R. Dumont & T. R. Moore, 1993. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biology and Biochemistry 25: 321–326.

    Article  CAS  Google Scholar 

  • Ehleringer, James & Olle Björkman, 1977. Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. Plant Physiology 59: 86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eller, F., C. Lambertini, L. X. Nguyen & H. Brix, 2014. Increased invasive potential of non-native Phragmites australis: elevated CO2 and temperature alleviate salinity effects on photosynthesis and growth. Global Change Biology 20: 531–543.

    Article  PubMed  Google Scholar 

  • Findlay, S., P. Groffman & S. Dye, 2003. Effects of Phragmites australis removal on marsh nutrient cycling. Wetlands Ecology and Management 11: 157–165.

    Article  CAS  Google Scholar 

  • Fox, L., I. Valiela & E. L. Kinney, 2012. Vegetation cover and elevation in long-term experimental nutrient-enrichment plots in Great Sippewissett Salt Marsh, Cape Cod, Massachusetts: implications for eutrophication and sea level rise. Estuaries and Coasts 35: 445–458.

    Article  CAS  Google Scholar 

  • Gedan, K. B. & M. D. Bertness, 2010. How will warming affect the salt marsh foundation species Spartina patens and its ecological role? Oecologia 164: 479–487.

    Article  PubMed  Google Scholar 

  • Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54: 187–211.

    Article  Google Scholar 

  • Keller, J. K., A. A. Wolf, P. B. Weisenhorn, B. G. Drake & J. P. Megonigal, 2009. Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96: 101–117.

    Article  CAS  Google Scholar 

  • Kettenring, K. M., M. K. McCormick, H. M. Baron & D. F. Whigham, 2011. Mechanisms of Phragmites australis invasion: feedbacks among genetic diversity, nutrients, and sexual reproduction. Journal of Applied Ecology 48: 1305–1313.

    Article  Google Scholar 

  • Kool, D. M., J. Dolfing, N. Wrage & J. W. Van Groenigen, 2011. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biology and Biochemistry 43: 174–178.

    Article  CAS  Google Scholar 

  • Langley, J. A. & J. P. Megonigal, 2010. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466: 96–99.

    Article  CAS  PubMed  Google Scholar 

  • Lissner, J., H. H. Schierup, F. A. Comín & V. Astorga, 1999. Effect of climate on the salt tolerance of two Phragmites australis populations. Aquatic Botany 64: 335–350.

    Article  CAS  Google Scholar 

  • Lovell, C. R., 2005. Belowground interactions among salt marsh plants and microorganisms. In Kristensen, E., R. R. Haese & J. E. Kostka (eds), Coastal and Estuarine Studies. American Geophysical Union, Washington, DC: 61–83.

    Google Scholar 

  • Martin, R. M. & S. Moseman-Valtierra, 2015. Greenhouse gas fluxes vary between Phragmites australis and native zones in coastal wetlands along a salinity gradient. Wetlands 35(6): 1021–1031.

    Article  Google Scholar 

  • Martin, R. M. & S. Moseman-Valtierra, 2017. Plant manipulations and diel cycle measurements test drivers of carbon dioxide and methane fluxes in a Phragmites australis-invaded coastal marsh. Aquatic Botany 137: 16–23.

    Article  CAS  Google Scholar 

  • Mcleod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger & B. R. Silliman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Frontiers in Ecology and the Environment 9: 552–560.

    Article  Google Scholar 

  • Moseman-Valtierra, S., R. Gonzalez, K. D. Kroeger, J. Tang, W. C. Chao, J. Crusius, J. Bratton, A. Green & J. Shelton, 2011. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmospheric Environment 45: 4390–4397.

    Article  CAS  Google Scholar 

  • Mozdzer, T. J. & J. P. Megonigal, 2012. Jack-and-Master trait responses to elevated CO2 and N: a comparison of native and introduced Phragmites australis. PLoS ONE 7: e42794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozdzer, T. J. & J. P. Megonigal, 2013. Increased methane emissions by an introduced Phragmites australis lineage under global change. Wetlands 33: 609–615.

    Article  Google Scholar 

  • Mozdzer, T. J. & J. C. Zieman, 2010. Ecophysiological differences between genetic lineages facilitate the invasion of non-native Phragmites australis in North American Atlantic coast wetlands. Journal of Ecology 98: 451–458.

    Article  Google Scholar 

  • Mozdzer, T. J., J. A. Langley, P. Mueller & J. P. Megonigal, 2016. Deep rooting and global change facilitate spread of invasive grass. Biological Invasions 18: 2619–2631.

    Article  Google Scholar 

  • Mueller, P., R. N. Hager, J. E. Meschter, T. J. Mozdzer, J. A. Langley, K. Jensen & J. P. Megonigal, 2016. Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biological Invasions 18(9): 2635–2647.

    Article  Google Scholar 

  • Oren, R., D. S. Ellsworth, K. H. Johnsen, N. Phillips, B. E. Ewers, C. Maier, K. V. Schäfer, H. McCarthy, G. Hendrey, S. G. McNulty, et al., 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411: 469–472.

    Article  CAS  PubMed  Google Scholar 

  • Poffenbarger, H. J., B. A. Needelman & J. P. Megonigal, 2011. Salinity influence on methane emissions from tidal marshes. Wetlands 31: 831–842.

    Article  Google Scholar 

  • Ravit, B., J. G. Ehrenfeld & M. M. Haggblom, 2003. A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey. Estuaries 26: 465–474.

    Article  Google Scholar 

  • Reich, P. B., S. E. Hobbie, T. Lee, D. S. Ellsworth, J. B. West, D. Tilman, J. M. Knops, S. Naeem & J. Trost, 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440: 922–925.

    Article  CAS  PubMed  Google Scholar 

  • Sage, R. F. & D. S. Kubien, 2007. The temperature response of C3 and C4 photosynthesis. Plant, Cell & Environment 30: 1086–1106.

    Article  CAS  Google Scholar 

  • Salter, K. C. & R. F. Fawcett, 1993. The ART test of interaction: a robust and powerful rank test of interaction in factorial models. Communications in Statistics-Simulation and Computation 22: 137–153.

    Article  Google Scholar 

  • Seaman Jr., J. W., S. C. Walls, S. E. Wise & R. G. Jaeger, 1994. Caveat emptor: rank transform methods and interaction. Trends in Ecology and Evolution 9: 261–263.

    Article  PubMed  Google Scholar 

  • Silliman, B. R. & M. D. Bertness, 2004. Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conservation Biology 18: 1424–1434.

    Article  Google Scholar 

  • Stevens, R. J., R. J. Laughlin & J. P. Malone, 1998. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biology and Biochemistry 30: 1119–1126.

    Article  CAS  Google Scholar 

  • Stocker, D. Q., 2013. Climate change 2013: the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Summary for Policymakers, IPCC.

  • Susan, S., 2007. Climate change 2007-the physical science basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge.

  • Sutton-Grier, A. E. & J. P. Megonigal, 2011. Plant species traits regulate methane production in freshwater wetland soils. Soil Biology and Biochemistry 43: 413–420.

    Article  CAS  Google Scholar 

  • Valiela, I. & M. L. Cole, 2002. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5: 92–102.

    Article  Google Scholar 

  • Wigand, C., R. A. McKinney, M. A. Charpentier, M. M. Chintala & G. B. Thursby, 2003. Relationships of nitrogen loadings, residential development, and physical characteristics with plant structure in New England salt marshes. Estuaries 26: 1494–1504.

    Article  CAS  Google Scholar 

  • Windham, L., 2001. Comparison of biomass production and decomposition between Phragmites australis (common reed) and Spartina patens (salt hay grass) in brackish tidal marshes of New Jersey, USA. Wetlands 21: 179–188.

    Article  Google Scholar 

  • Windham, L. & L. A. Meyerson, 2003. Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern US. Estuaries 26: 452–464.

    Article  Google Scholar 

  • Wobbrock, J. O., L. Findlater, D. Gergle & J. J. Higgins, 2011. The aligned rank transform for nonparametric factorial analyses using only anova procedures. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM: 143–146.

  • Wrage, N., G. Velthof, M. van Beusichem & O. Oenema, 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry 33: 1723–1732.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Department of Agriculture National Institute of Food and Agriculture (Hatch Project #229286, grant to Moseman-Valtierra) and the National Science Foundation Experimental Program to Stimulate Competitive Research Cooperative Agreement (#EPS-1004057, graduate fellowship to Martin). Sincere thanks go to C. Wigand and two anonymous reviewers for manuscript advice, and to J. Bowen, L. Meyerson, A. Roberts, and C. Wigand for their design advice. We thank I. Armitstead, I. Burns, L. Brannon, S. Doman, S. Kelley, T. Moebus, and K. Sperry for their assistance with mesocosm preparation and data collection, and C. Martin for assistance with R code for a data analysis automation script.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rose M. Martin.

Additional information

Handling editor: Chris Joyce

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 74 kb)

Supplementary material 2 (DOCX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, R.M., Moseman-Valtierra, S. Different short-term responses of greenhouse gas fluxes from salt marsh mesocosms to simulated global change drivers. Hydrobiologia 802, 71–83 (2017). https://doi.org/10.1007/s10750-017-3240-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3240-1

Keywords

Navigation