Skip to main content
Log in

A comparison of sediment microbial communities associated withPhragmites australis andSpartina alterniflora in two brackish wetlands of New Jersey

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The extensive spread ofPhragmites australis throughout brackish marshes on the East Coast of the United States is a major factor governing management and restoration decisions because it is assumed that biogeochemical functions are altered by the invasion. Microbial activity is important in providing wetland biogeochemical functions such as carbon and nitrogen cycling, but there is little known about sediment microbial communities inPhragmites marshes. Microbial populations associated with invasivePhragmites vegetation and with native salt marsh cordgrass,Spartina alterniflora, may differ in the relative abundance of microbial taxa (community structure) and in the ability of this biota to decompose organic substrates (community biogeochemical function). This study compares sediment microbial communities associated withPhragmites andSpartina vegetation in an undisturbed brackish marsh near Tuckerton, New Jersey (MUL), and in a brackish marsh in the anthropogenically affected Hackensack meadowlands (SMC). We use phospholipid fatty acid (PLFA) analysis and enzymataic activity to profile sediment microbial communities associated with both plants in each site. Sediment analyses include bulk density, total organic matter, and root biomass. PLFA profiles indicate that the microbial communities differ between sites with the undisturbed site exhibiting greater fatty acid richness (62 PLFA recovered from MUL versus 38 from SMC). Activity of the 5 enzymes analyzed (β-glucosidase, acid phosphatase, chitobiase, and 2 oxidases) was higher in the undisturbed site. Differences between vegetation species as measured by Principal Components Analysis were significantly greater at the undisturbed MUL site than at SMC, and patterns of enzyme activity and PLFAs did not correspond to patterns of root biomass. We suggest that in natural wetland sediments, macrophyte rhizosphere effects influence the community composition of sediment microbial populations. Physical and chemical site disturbances may impose limits on these rhizosphere effects, decreasing sediment microbial diversity and potentially, microbial biogeochemical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adrianes, P. andT. Vogel. 1995. Biological treatment of chlorinated organics, p. 435–486.In L. Y. Young and C. E. Cerniglia (eds.), Microbial Transformation and Degradation of Toxic Organic Chemicals. John Wiley and Sons, New York.

    Google Scholar 

  • Ajwa, H. A., C. J. Dell, andC. W. Rice. 1999. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization.Soil Biology and Biochemistry 31:769–777.

    Article  CAS  Google Scholar 

  • Alder, A. C., M. M. Häggblom, S. R. Oppenheimer, andL. Y. Young. 1993. Reductive dechlorination of polychlorinated biphenyls in freshwater and marine sediments.Environmental Science and Technology 27:530–538.

    Article  CAS  Google Scholar 

  • Armstrong, J., W. Armstrong, P. M. Beckett, J. E. Halder, S. Lythe, R. Holt, andA. Sinclair. 1996. Pathways of aeration and the mechanisms and beneficial effects of humidity- and venturi-induced convections inPhragmites australis (Cav.) Trin. ex Steud.Aquatic Botany 54:177–197.

    Article  Google Scholar 

  • Armstrong, W., D. Cousins, J. Armstrong, D. W. Turner, andP. M. Beckett. 2000. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: A microelectrode and modeling study withPhragmites australis.Annals of Botany 86:687–703.

    Article  Google Scholar 

  • Bergholz, P. W., C. E. Bagwell, andC. R. Lovell. 2001. Physiological diversity of rhizoplane diazotrophs of the saltmeadow cordgrass,Spartina patens: Implications for host specific ecotypes.Microbial Ecology 42:466–473.

    Article  CAS  Google Scholar 

  • Binkley, D. andC. Giardina. 1998. Why do tree species affect soils? The warp and wood of tree-soil interactions.Biogeochemistry 42:89–106.

    Article  Google Scholar 

  • Borga, P., M. Nilsson, andA. Tunlid. 1994. Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty acid analysis.Soil Biology and Biochemistry 26:841–848.

    Article  CAS  Google Scholar 

  • Brix, H., B. K. Sorrell, andP. T. Orr. 1992. Internal pressurization and convective gas flow in some emergent freshwater macrophytes.Limnology and Oceanography 37:1420–1433.

    Google Scholar 

  • Dick, W. A. andM. A. Tabatabai. 1993. Significance and potential uses of soil enzymes, p. 95–127.In F. B. Metting, Jr. (ed.), Soil Microbial Ecology, Marcel Dekker, New York.

    Google Scholar 

  • Ehrenfeld, J. G. 2001. Plant-soil interactions, p. 689–709.In S. Levin (ed.), Encyclopedia of Biodiversity. Academic Press, San Diego, California.

    Google Scholar 

  • Eivazi, F. andM. R. Bayan. 1996. Effects of long-term prescribed burning on the activity of select soil enzymes in an oak-hickory forest.Canadian Journal of Forest Research 26:1799–1804.

    Article  CAS  Google Scholar 

  • Frankenberger, Jr.,W. T. andW. A. Dick. 1983. Relationships between enzyme activities and microbial growth and activity indices in soil.Soil Society of American Journal 47:945–951.

    Article  CAS  Google Scholar 

  • Gandy, E. L. andD. C. Yoch. 1988. Relationship between nitrogen-fixing sulfate reducers and fermenters in salt marsh sediments and roots ofSpartina alterniflora.Applied and Environmental Microbiology 54:2031–2036.

    CAS  Google Scholar 

  • Garland, J. 1996. Patterns of potential C source utilization by rhizosphere communities.Soil Biology and Biochemistry 28:223–230.

    Article  CAS  Google Scholar 

  • Grayston, S. J., C. D. Wang, A. C. Campbell, andA. C. Edwards. 1998. Selective influence of plant species on microbial diversity in the rhizosphere.Soil Biology and Biochemistry 30:369–378.

    Article  CAS  Google Scholar 

  • Grosse, W., J. Armstrong, andW. Armstrong. 1996. A history of pressurized gas-flow studies in plants.Aquatic Botany 54:87–100.

    Article  Google Scholar 

  • Häggblom, M. M., V. K. Knight, andL. J. Kerkhof. 2000. Anaerobic decomposition of halogenated aromatic compounds.Environmental Pollution 107:199–207.

    Article  Google Scholar 

  • Hobbie, S. E. 1992. Effects of plant species on nutrient cycling.Trends in Ecology and Evolution 10:336–339.

    Article  Google Scholar 

  • Howes, B. L., R. W. Howarth, J. M. Teal, andI. Valiela. 1981. Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production.Limnology and Oceanography 26:350–360.

    Google Scholar 

  • Howes, B. L. andJ. M. Teal. 1994. Oxygen loss fromSpartina alterniflora and its relationship to salt marsh oxygen balance.Oecologia 97:431–438.

    Article  Google Scholar 

  • Hwang, B. L. andJ. T. Morris. 1991. Evidence for hygrometric pressurization in the internal gas space ofSpartina alterniflora.Plant Physiology 96:166–171.

    CAS  Google Scholar 

  • Kang, H., C. Freeman, D. Lee, andW. J. Mitsch. 1998. Enzyme activities in constructed wetlands: Implications for water quality amelioration.Hydrobiologia 368:231–235.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., G. M. Wolfaardt, D. R. Korber, andD. E. Caldwell. 1999. Functional and structural responses of a degradative microbial community to substrates with varying degrees of complexity in chemical structure.Microbial Ecology 38:215–224.

    Article  CAS  Google Scholar 

  • Kennish, M. J. 1992. Ecology of Estuaries: Anthropogenic Effects. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • King, J. D., D. C. White, andC. W. Taylor. 1977. Use of lipid composition and metabolism to examine structure and activity of estuarine detrital microflora.Applied Environmental Microbiology 33:1177–1183.

    CAS  Google Scholar 

  • Kourtev, P. S., J. G. Ehrenfeld, and M. Haggblom. In press. Exotic plant species alter microbial structure and function in the soil.Ecology.

  • Kuperman, R. G. andM. M. Carreiro. 1997. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem.Soil Biology and Biochemistry 29:179–190.

    Article  CAS  Google Scholar 

  • Lovell, C. R., M. J. Friez, J. W. Longshore, andC. E. Bagwell. 2001. Recovery and phylogenetic analysis of NifH sequences from diazotrophic bacteria associated with dead aboveground biomass ofSpartina alterniflora.Applied and Environmental Microbiology 67:5308–5314.

    Article  CAS  Google Scholar 

  • Ludemann, H., I. Arth, andW. Liesack. 2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores.Applied and Environmental Microbiology 66:754–762.

    Article  CAS  Google Scholar 

  • Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetland Ecological Management 9:89–103.

    Article  Google Scholar 

  • Moller, S., D. R. Korber, G. M. Wolfaardt, S. Molin, andD. E. Caldwell. 1997. Impact of nutrient composition on a degradative biofilm community.Applied and Environmental Microbiology 63:2432–2438.

    CAS  Google Scholar 

  • Nannipieri, P., S. Greco, andB. Ceccanti. 1990. Ecological significance of the biological activity in soil, p. 293–355.In S. G. Bollag (ed.), Soil Biochemistry, Volume 6. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Piceno, Y. M. andC. R. Lovell. 2000. Stability in natural bacterial communities: II. Plant resource allocation effects on rhizosphere diazotroph assemblage composition.Microbial Ecology 39:41–48.

    Article  CAS  Google Scholar 

  • Piceno, Y. M., P. Noble, andC. Lovell. 1999. Spatial and temporal assessment of diazotroph assemblage composition in vegetation salt marsh sediments using denaturing, gradient gel electrophoresis analysis.Microbial Ecology 38:157–167.

    Article  CAS  Google Scholar 

  • Quinn, J. R. 1997. Fields of Sun and Grass. Rutgers University Press, New Brunswick, New Jersey.

    Google Scholar 

  • Rice, D., J. Rooth, andJ. C. Stevenson. 2000. Colonization and expansion ofPhragmites australis in upper Chesapeake Bay tidal marshes.Wetlands 20:280–299.

    Article  Google Scholar 

  • Rooth, J. E. andJ. C. Stevenson. 2000. Sediment deposition patterns inPhragmites australis communities: Implications for coastal areas threatened by rising sea-level.Wetlands Ecology and Management 8:173–183.

    Article  Google Scholar 

  • Shackle, V. J., C. Freeman, andB. Reynolds. 2000. Carbon supply and the regulation of enzyme activity in constructed wetlands.Soil Biology and Biochemistry 32:1935–1940

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. 1994. Enzymic analysis of microbial pattern and process.Biology and Fertility of Soils 17:69–74.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., R. K. Antibus, A. E. Linkins, C. A. McClaugherty, L. Rayburn, D. Repert, andT. Weiland. 1993. Wood decomposition: Nitrogen and phosphorus dynamics in relation to extracellular enzyme activity.Ecology 74:1586–1593.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L. andD. L. Moorhead. 1994. Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litteer decomposition.Soil Biology and Biochemistry 26:1305–1311.

    Article  Google Scholar 

  • Valiela, I., J. M. Teal, andN. Y. Persson. 1976. Production and dunamics of experimentally enriched salt marsh vegetation: Belowground biomass.Limnology and Oceanography 21:245–252.

    Article  Google Scholar 

  • Wainwright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass,Spartina alterniflora, and the common reed,Phragmites australis, to brackish-marsh food webs.Marine Ecology Progress Series 200:77–91.

    Article  Google Scholar 

  • Waldrop, M. P., T. C. Balser, andM. K. Firestone. 2000. Linking microbial community composition to function in a tropical soil.Soil Biology and Biochemistry 32:1837–1846.

    Article  CAS  Google Scholar 

  • Weinstein, M. P. andJ. H. Balletto. 1999. Does the common reed,Phragmites australis, affect essential fish habitat?Estuaries 22:793–802.

    Article  Google Scholar 

  • Weis, J. S. andP. Weis. 2000. Behavioral responses and interactions of estuarine animals with an invasive marsh plant: A laboratory analysis.Biological Invasions 2:305–314.

    Article  Google Scholar 

  • Westover, K. M., A. C. Kennedy, andS. E. Kelley. 1997. Patterns of rhizosphere microbial community structure associated with co-occurring plant species.Journal of Ecology 85:863–873.

    Article  Google Scholar 

  • White, D. C., W. M. Davis, J. S. Nickels, J. D. King, andR. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate.Oecologia 40:51–62.

    Article  Google Scholar 

  • White, D. C., H. C. Pinkart, andD. B. Ringelberg. 1996. Biomass measurement: Biochemical approaches, p. 91–101.In C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach, and M. V. Walter (eds.), Manual of Environmental Microbiology. ASM Press, Washington, D.C.

    Google Scholar 

  • Windham, L. 2001. Comparison of biomass production and decomposition betweenPhragmites australis (common reed) andSpartina patens (salt hay grass) in brackish tidal marshes of New Jersey, USA.Wetlands 21:179–188.

    Article  Google Scholar 

  • Windham, L. and J. G. Ehrenfeld. In press. Conflicting effects and the net impact of a plant invasion on nitrogen cycling processes within brackish tidal marshes.Ecological Applications.

  • Wolfaardt, G. M., J. R. Lawrence, R. D. Robarts, S. J. Caldwell, andD. E. Caldwell. 1994. Multicellular organization in a degradative biofilm community.Applied and Environmental Microbiology 60:434–446.

    CAS  Google Scholar 

Sources of Unpublished Materials

  • Bart, D. Personal Communication. Rutgers University, New Brunswick, New Jersey.

  • New Jersey Meadowlands Commission. Unpublished Data. 1 DeKorte Park Plaza, Lyndhurst, New Jersey.

  • Weis, J. Personal Communication. University, New Brunswick, New Jersey.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Ravit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravit, B., Ehrenfeld, J.G. & Haggblom, M.M. A comparison of sediment microbial communities associated withPhragmites australis andSpartina alterniflora in two brackish wetlands of New Jersey. Estuaries 26, 465–474 (2003). https://doi.org/10.1007/BF02823723

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823723

Keywords

Navigation