Skip to main content
Log in

Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern U.S.

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Several recent studies indicate that the replacement of extant species withPhragmites australis can alter the size of nitrogen (N) pools and fluxes within tidal marshes. Some common effects ofP. australis expansion are increased standing stocks of N, greater differentiation of N concentrations between plant tissues (high N leaves and low N stems), and slower whole-plant decay rates than competing species (e.g.,Spartina, Typha spp.). Some of the greater differences between marsh types involveP. australis effects on extractable and porewater pools of dissolved inorganic nitrogen (DIN) and N mineralization rates. Brackish and salt marshes show higher concentrations of DIN in porewater beneathSpartina spp. relative toP. australis, but this is not observed in freshwater tidal marshes whenP. australis is compared withTypha spp. or mixed plant assemblages. With few studies of concurrent N fluxes, the net effect ofP. australis on marsh N budgets is difficult to quantify for single sites and even more so between sites. The magnitude and direction of impacts ofP. australis on N cycles appears to be system-specific, driven more by the system and species being invaded than byP. australis itself. WhereP. australis is found to affect N pools and fluxes, we suggest these alterations result from increased biomass (both aboveground and belowground) and increased allocation of that biomass to recalcitrant stems. Because N pools are commonly greater inP. australis than in most other communities (due to plant and litter uptake), one of the most critical questions remaining is “From where is the extra N inP. australis communities coming?” It is important to determine if the source of the new N is imported (e.g., anthropogenic) or internallyproduced (e.g., fixed, remineralized organic matter). In order to estimate net impacts ofP. australis on marsh N budgets, we suggest that further research be focused on the N source that supports high standing stocks of N inP. australis biomass (external input versus internal cycling) and the relative rates of N loss from different marshes (burial versus subsurface flow versus denitrification).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, I. C., C. T. Tobias, B. B. Neikirk, andR. L. Wetzel. 1997. Development of a process-based nitrogen mass balance model for a Virginia (USA)Spartina alterniflora salt marsh: Implications for net DIN flux.Marine Ecology Progress Series 159: 13–27.

    Article  Google Scholar 

  • Asaeda, T., L. H. Nam, P. Hietz, N. Tanaka, andS. Karunaratne. 2002. Seasonal fluctuations in live and dead biomass ofPhragmites australis as described by a growth and decomposition model: Implications of duration of aerobic conditions for litter mineralization and sedimentation.Aquatic Botany 73: 223–239.

    Article  Google Scholar 

  • Bart, D. J. andJ. M. Hartman. 2000. Environmental determinants ofPhragmites australis expansion in a New Jersey salt marsh: An experimental approach.Oikos 89:59–69.

    Article  Google Scholar 

  • Bertness, M. D., P. J. Ewanchuk, andB. R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes.Proceedings of the National Academy of Sciences 99:1395–1398.

    Article  CAS  Google Scholar 

  • Boar, R. 1996. Temporal variation in the nitrogen content ofPhragmites australis (Cav.) Trin. ex Steud. from a shallow fertile lake.Aquatic Botany 55:171–181.

    Article  CAS  Google Scholar 

  • Bowden, W. B. 1987. The biogeochemistry of nitrogen in freshwater wetlands.Biogeochemistry 4:313–348.

    Article  CAS  Google Scholar 

  • Brix, H. 1993. Macrophyte-mediated oxygen transfer in wetlands: Transport mechanisms and rates, p. 391–398.In G. A. Moshiri (ed.), Constructed Wetlands for Water Quality Improvement. Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Burke, D. J. 2001. The interaction between the grassSpartina patens, N-fixing bacteria and vesicular arbuscular Mycrorhizae in a northeastern salt marsh. Ph.D. Dissertation, Rutgers University, Newark, New Jersey.

    Google Scholar 

  • Chambers, R. M. 1997. Porewater chemistry associated withPhragmites andSpartina in a Connecticut tidal marsh.Wetlands 17:360–367.

    Google Scholar 

  • Chambers, R. M. 1999. Characterization of nutrient status ofPhragmites australis in a wetland slated for restoration: A wetlands ecology class project. Research abstracts, p. 10. The Greater New England Symposium on the Ecology of Invasive Species. February 27, 1999. Yale School of Forestry and Environmental Studies, New Haven, Connecticut.

    Google Scholar 

  • Chambers, R. M., T. J. Mozdzer, andJ. C. Ambrose. 1998. Effects of salinity and sulfide on the distribution ofPhragmites australis andSpartina alterniflora in a tidal saltmarsh.Aquatic Botany 62:161–169.

    Article  CAS  Google Scholar 

  • Chapin, III,F. S. 1993. Functional role of growth forms in ecosystem and global processes, p. 287–312.In J. R. Ehleringer and C. B. Field (eds.), Scaling Physiological Processes: Leaf to Globe. Academic Press, New York.

    Google Scholar 

  • Clevering, O. A. 1998. An investigation into the effects of nitrogen on growth and morphology and stable of dieback populations ofPhragmites australis.Aquatic Botany 60:11–25.

    Article  Google Scholar 

  • Craft, C. B., E. D. Seneca, andS. W. Broome. 1994. Loss on ignition and Kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: Calibration with dry combustion.Estuaries 14:175–179.

    Article  Google Scholar 

  • Ennabilli, A., M. Ater, andM. Radoux. 2001. Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula.Aquatic Botany 62:45–56.

    Article  Google Scholar 

  • Ehrenfeld, J. G., P. Kourtev, andW. Huang. 2001. Changes in soil functions following invasions of exotic understory plants in deciduous forests.Ecological Applications 11:1287–1300.

    Article  Google Scholar 

  • Ehrenfeld, J. G., W. F. J. Parsons, X. Han, R. W. Parmelee, andW. Zhu. 1997. Live and dead roots in forest soil horizons: contrasting effects on nitrogen dynamics effects.Ecology 78: 348–362.

    Google Scholar 

  • Ehrenfeld, J. G. andN. Scott. 2001. Invasive species and the soil: Effects on organisms and ecosystem processes.Ecological Applications 11:1259–1260.

    Article  Google Scholar 

  • Farnsworth, E. J. and L. A. Meyerson. In press. Comparative ecophysiology of four wetland plant species along a continuum of invasiveness.Wetlands.

  • Findlay, S., S. Dye, K. Kuehn, andM. Gessner. 2002. Microbial growth and nitrogen retention in litter ofPhragmites australis compared toTypha angustifolia.Wetlands 22:661–625.

    Article  Google Scholar 

  • Hobbie, S. 1992. Effects of plant species on nutrient cycling.Trends in Ecology and Evolution 7:213–216.

    Article  Google Scholar 

  • Hooper, D. U. andP. M. Vitousek. 1998. Effects of plant composition and diversity on nutrient cycling.Ecological Monographs 68:121–149.

    Google Scholar 

  • Hopkinson, C. S. andJ. P. Schubauer. 1984. Effects of plant composition and diversity on nutrient cycling.Ecological Monographs 68:121–149.

    Google Scholar 

  • Hopkinson, C. S. andJ. P. Schubauer. 1984. Static and dynamic aspects of nitrogen cycling in the salt marsh graminoidSpartina alterniflora.Ecology 64:961–969.

    Article  Google Scholar 

  • Groffman, P. M., E. Holland, D. D. Myrold, G. P. Robertson, andX. Zou. 1999. Denitrification, p. 272–288.In G. P. Robertson, C. S. Bledsoe, D. C. Coleman, and P. Sollins (eds.), Standard Soil Methods for Long Term Ecological Research. Oxford University Press, New York.

    Google Scholar 

  • Jenkinson, D. S. andD. S. Powlson. 1976. The effects of biocidal treatments on metabolism in soil—I. Fumigation with chloroform.Soil Biology and Biochemistry 8:167–177.

    Article  CAS  Google Scholar 

  • Kemp, W. M., P. A. Sampou, J. M. Caffrey, M. Mayer, K. Henriksen, andW. R. Boynton. 1990. Ammonium recycling versus denitrification in Chesapeake Bay sediments.Limnology and Oceanography 35: 1545–1563.

    CAS  Google Scholar 

  • Lin, Y., S. Jing, T. Wang, andD. Lee. 2002. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands.Environmental Pollution 119:413–420.

    Article  CAS  Google Scholar 

  • Mack, M. C., C. M. D'Antonio, andR. E. Ley. 2001. Alteration of ecosystem nitrogen dynamics by exotic plants: A case study of C4 grasses in Hawaii.Ecological Applications 11:1323–1335.

    Google Scholar 

  • Marinucci, A. C. andR. Bartha. 1982. A component model of microbial decomposition in a New Jersey salt marsh.Canadian Journal of Botany 50:1618–1624.

    Article  Google Scholar 

  • Marks, M., B. Lapin, andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management and monitoring.Natural Areas Journal 14:285–294.

    Google Scholar 

  • McJannet, C. L., P. A. Keddy, andF. R. Pick. 1995. Nitrogen and phosphorous tissue concentrations in 41 wetland plants: A comparison across habitats and functional groups.Functional Ecology 9:231–238.

    Article  Google Scholar 

  • Meyerson, L. A. 2000. Ecosystem-level effects of invasive species: APhragmites case study in two freshwater tidal marsh ecosystems on the Connecticut River. Doctoral Thesis, Yale University, New Haven, Connecticut.

    Google Scholar 

  • Meyerson, L. A., R. M. Chambers, andK. A. Vogt. 1999. The effects ofPhragmites removal on nutrient pools in a freshwater tidal marsh ecosystem.Biological Invasions 1:115–127.

    Article  Google Scholar 

  • Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000a. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetland Ecology and Management 8:89–103.

    Article  CAS  Google Scholar 

  • Meyerson, L. A., K. A. Vogt, andR. M. Chambers. 2000b. Linking the success ofPhragmites australis to the decoupling of ecosystem nutrient cycles, p. 817–834.In M. Weinstein and D. Kreeger (eds.), Concepts and Controversies of Tidal Marsh Ecology. Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Minchinton, T. E. 1999. Disturbance along the terrestrial-marsh ecotone: Mechanisms of invasion by the common reed,Phragmites australis. Conference abstracts, p. 71.In 15th Biennial International Conference, Estuarine Research Federation, September 25–30. New Orleans, Louisiana.

  • Morris, J. T. andW. B. Bowden. 1986. A mechanistic, numerical model of sedimentation, mineralization, and decomposition for marsh sediments.Soil Science Society of America Journal 50: 96–105.

    Article  CAS  Google Scholar 

  • Newell, S. Y. 1996. Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones.Journal of Experimental Marine Biology and Ecology 200: 187–206.

    Article  Google Scholar 

  • Otto, S., P. M. Groffman, S. E. G. Findlay, andA. E. Arreola. 1999. Invasive plant species and microbial processes in a tidal freshwater marsh.Journal of Environmental Quality 28:1252–1257.

    CAS  Google Scholar 

  • Pastor, J., B. Dewey, R. J. Naiman, P. F. McInnes, andY. Cohen. 1993. Moose browsing and soil fertility in the boreal forests of Isle Royale National Park.Ecology 74:467–480.

    Article  Google Scholar 

  • Piazzi, L., S. Acunto, andF. Cinelli. 1999. The ratio of transpiration versus evaporation in a reed belt as influenced by weather conditions.Aquatic Botany 63:103–112.

    Article  Google Scholar 

  • Ravit, B., J. G. Ehrenfeld, andM. M. Haggblom. 2003. A comparison of sediment microbial communities associated withPhragmites australis andSpartina alterniflora in two brackish wetlands of New Jersey.Estuaries 26:465–474.

    Article  Google Scholar 

  • Romero, J. A., H. Brix, andF. A. Comín. 1999. Interactive effects of N and P on growth, nutrient allocation and NH4+ uptake kinetics byPhragmites australis.Aquatic Botany 64:369–380.

    Article  CAS  Google Scholar 

  • Rooth, J. E. andJ. C. Stevenson. 2000. Sediment deposition patterns inPhragmites australis communities: Implications for coastal areas threastened by rising sea-level.Wetlands Ecology and Management 8:173–183.

    Article  Google Scholar 

  • Rysgaard, S., P. Thastum, T. Dalsgaard, P. B. Christensen, andN. P. Sloth. 1999. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments.Estuaries 22:21–30.

    Article  CAS  Google Scholar 

  • Shaver, G. R. andJ. M. Melillo. 1984. Nutrient budgets of marsh plants: Efficiency concepts and relation to availability.Ecology 65:1491–1510.

    Article  Google Scholar 

  • Simpson, R. L., R. E. Good, M. A. Leck, andD. F. Whigham. 1983. The ecology of freshwater tidal wetlands.Bioscience 33: 255–259.

    Article  CAS  Google Scholar 

  • Smart, R. M. andJ. W. Barko. 1980. Nitrogen nutrition and salinity tolerance ofDistichlis spicata andSpartina alterniflora.Ecology 61:630–638.

    Article  CAS  Google Scholar 

  • Stanton, L. 2001. The effects of disturbance and eutrophication on the establishment ofPhragmites australis. Conference abstracts, p. 112.In 16th Biennial International Conference, Estuarine Research Federation, November 4–8. St. Petersburg, Florida.

  • Starink, M., C. Bollaert, P. van Rijswijk, J. J. Middelberg, P. M. J. Herman, T. E. Cappenberg, and P. Meire. 1998. Nitrification-denitrification in the rhizosphere of emergent macrophytes: Fiction or facts. Research abstract. Joint Summer Meeting of Ecological Society of America and American Society of Limnology and Oceanography, June 8–13. St. Louis, Missouri.

  • Templer, P., S. Findlay, andC. Wigand. 1998. Sediment chemistry associated with native and non-native emergent macrophytes of a Hudson River marsh ecosystem.Wetlands 18:70–78.

    Article  Google Scholar 

  • Van der Putten, W. H. 1997. Die-back ofPhragmites australis in European wetlands: An overview of the European Research Programme on Reed Die-back and Progression (1993–1994).Aquatic Botany 59:263–275.

    Article  Google Scholar 

  • Wainright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrassSpartina alterniflora and the common reedPhragmites australis to brackishmarsh food webs.Marine Ecology Progress Series 200:77–91.

    Article  CAS  Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, C. G. Rilling, andR. A. Fertik. 2001. Rates, patterns, and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24: 90–107.

    Article  Google Scholar 

  • Wedin, D. A. andD. Tilman. 1990. Species effects on nitrogen cycling: A test with perennial grasses.Oecologia 84:433–441.

    Google Scholar 

  • White, D. S. andB. L. Howes. 1994a. Nitrogen incorporation into decomposing litter ofSpartina alterniflora.Limnology and Oceanography 39:133–140.

    CAS  Google Scholar 

  • White, D. S. andB. L. Howes. 1994b. Long-term15N-nitrogen retention in the vegetated sediments of a New England salt marsh.Limnology and Oceanography 39:1878–1892.

    Article  Google Scholar 

  • White, D. S. andB. L. Howes. 1994c. Translocation, remineralization, and turnover of nitrogen in the roots and rhizomes ofSpartina alterniflora (Gramineae).American Journal of Botany 81:1225–1234.

    Article  CAS  Google Scholar 

  • Windham, L. 1999. Effects of an invasive reedgrass,Phragmites australis, on nitrogen cycling in brackish tidal marshes of New York and New Jersey. Ph.D. Dissertation, Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Windham, L. 2001. Comparison of biomass production and decomposition betweenPhragmites australis (common reed) andSpartina patens (salt hay) in brackish tidal marsh of New Jersey.Wetlands 21:179–188.

    Article  Google Scholar 

  • Windham, L. andJ. G. Ehrenfeld. 2003. Net impact of a plant invasion on nitrogen cycling processes within a brackish tidal marsh.Ecological Applications 13:188–201.

    Article  Google Scholar 

  • Windham, L. andR. G. Lathrop. 1999. Effects ofPhragmites australis on aboveground biomass and soil properties in brackish tidal marsh.Estuaries 22:927–935.

    Article  Google Scholar 

  • Windham, L., J. Weis, andP. Weis. 2001. Patterns and processes of mercury (Hg) release from leaves of two dominant salt marsh plants:Spartina alterniflora (salt cordgrass) andPhragmites australis (common reed).Estuaries 24:787–795.

    Article  Google Scholar 

  • Windham, L., J. Weis, andP. Weis. 2003. Uptake and distribution of metals in plant tissue of two dominant salt marsh macrophytes,Spartina alterniflora (cordgrass) andPhragmites australis (common reed).Estuarine, Coast and Shelf Science 56:63–72.

    Article  CAS  Google Scholar 

  • Zhu, T. andF. J. Sikora. 1995. Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands.Water Science Technology 32:219–228.

    Article  CAS  Google Scholar 

Source of Unpublished Materials

  • Findlay, S. Unpublished Data. Institute of Ecosystem Studies, Box AB, Millbrook, New York 12545-0129.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisamarie Windham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windham, L., Meyerson, L.A. Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern U.S.. Estuaries 26, 452–464 (2003). https://doi.org/10.1007/BF02823722

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823722

Keywords

Navigation