Skip to main content
Log in

Core Allocations in Co-investment Problems

  • Published:
Group Decision and Negotiation Aims and scope Submit manuscript

Abstract

In a theoretical co-investment problem, a set of agents face a surplus-sharing situation with a single input and a single output exhibiting increasing average returns. All agents contribute their respective inputs and expect part of the collective output. Focusing on the core of the problem, we analyze whether a core allocation of the output is acceptable or compatible with a variation of input contributions, where larger payoffs are expected by those agents whose contribution has increased. We state a necessary and sufficient condition for a core allocation to be acceptable. We also introduce and study the acceptable core, that is, those core allocations acceptable for any possible increase of inputs. Finally, we axiomatically characterize when a set-solution that contains acceptable core allocations shrinks into the proportional allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Committed capital is the amount of money that a limited partner commits to invest in a private equity fund.

  2. Metrick and Yasuda comment that “The exact origin of the 20% focal point is unknown, but previous authors have pointed to Venetian merchants in the Middle Ages, speculative sea voyages in the age of exploration, and even the book of Genesis as sources”.

  3. We identify any real value function \(x\in {\mathbb {R}}^N\) on N with the n-tuple \(x=(x_1,x_2,\ldots ,x_n)\in {\mathbb {R}}^n\) of real numbers. See Driessen (1988).

  4. The marginal contribution of an agent \(i\in N\) measures the effect on the total output of adding agent i, i.e. \(f(\omega _N)-f(\omega _{N\setminus \{i\}})\). It is easy to check that for any core element \(x\in C(N,f,\omega )\), the payoff \(x_i\) of any agent \(i\in N\) cannot exceed its marginal contribution; otherwise \(x_i>f(\omega _N)-f(\omega _{N\setminus \{i\}})\) and thus \(f(\omega _N)-x_i=x_{N}-x_i=x_{N\setminus \{i\}}<f(\omega _{N\setminus \{i\}})\), but this would contradict x to be a core element.

  5. Given \(R\subseteq N\), we denote by \(\Theta ^R\) the set of all permutations of the elements of R.

  6. see Klement et al. (2011) , for example.

  7. These properties are adapted from Di Luca et al. (2013).

References

  • Anand K, Aron R (2003) Group buying on the web: a comparison of price discovery mechanisms. Manag Sci 49:1546–1562

    Article  Google Scholar 

  • Borm P, De Waegenaere A, Rafels C, Suijs J, Tijs S (2001) Cooperation in capital deposits. OR Spektrum 23:265–281

    Article  Google Scholar 

  • Bourreau M, Cambini C, Hoernig S (2012) Ex-ante regulation and co-investment in the transition to next generation access. Telecommun Policy 36:399–406

    Article  Google Scholar 

  • Bourreau M, Cambini C, Hoernig S (2018) Cooperative investment, access and uncertainty. Int J Ind Organ 56:78–106

    Article  Google Scholar 

  • Braun R, Jenkinson T, Schemmerl C (2020) Adverse selection and the performance of private equity co-investments. J Financ Econ 136:44–62

    Article  Google Scholar 

  • Casajus C, Huettner F (2014) Weakly monotonic solutions for cooperative games. J Econ Theory 154:162–172

    Article  Google Scholar 

  • Corcho P, Ferreira JL (2003) Generalized externality games. Theory Decis 54:163–184

    Article  Google Scholar 

  • De Waegenaere A, Suijs J, Tijs S (2005) Stable profit sharing in cooperative investment. OR Spektrum 27:85–93

    Article  Google Scholar 

  • Di Luca C, Izquierdo JM, Rafels C (2013) Remarks on the proportional distribution in increasing return to scale problems. Econ Bull 33:2938–2947

    Google Scholar 

  • Driessen T (1988) Coperative games, solutions and applications, vol 3. Theory and decision library series C. Springer, Berlin

    Book  Google Scholar 

  • Friedman E (2004) Strong monotonicity in surplus sharing. Econ Theor 23:643–658

    Article  Google Scholar 

  • Gulick G, Borm P, De Waegenaere A, Hendrinckx R (2010) Deposit games with reinvestment. Eur J Oper Res 200:788–799

    Article  Google Scholar 

  • Hong DH (2016) Core on Fuzzy Interval Cooperative Games. Appl Math Sci 10(18):887–898

    Google Scholar 

  • Izquierdo JM, Rafels C (1996) A generalization of the bankruptcy game: financial cooperative games, Working Paper E96/09, University of Barcelona

  • Izquierdo JM, Rafels C (2001) Average monotonic cooperative games. Games Econ Behav 36:174–192

    Article  Google Scholar 

  • Khavul S, Deeds D (2016) The evolution of initial co-investment syndications in an emerging venture capital market. J Int Manag 22:280–293

    Article  Google Scholar 

  • Klement EP, Manzi M, Mesiar R (2011) Ultramodular aggregation functions. Inf Sci 18:4101–4111

    Article  Google Scholar 

  • Kogan K, Tapiero CS (2012) Coordination of co-investments in supply chain infrastructure. J Intell Manuf 23:2471–2475

    Article  Google Scholar 

  • Liu X, Liu J, Lic C (2013) Average monotonic cooperative fuzzy games. Fuzzy Set Syst 231:95–107

    Article  Google Scholar 

  • Liu J, Tian HY (2014) Existence of fuzzy cores and generalizations of the K-K-M-S theorem. J Math Econ 52:148–152

    Article  Google Scholar 

  • Metrick A, Yasuda A (2010) The economics of private equity funds. Rev Financ Stud 23:2303–2341

    Article  Google Scholar 

  • Sagara N, Vlach M (2011) A new class of convex games on \(\sigma \)-algebras and the optimal partitioning of measurable spaces. Int J Game Theory 40:617–630

    Article  Google Scholar 

  • Schaarsberg M, Borm P, Hamers H, Reijnierse H (2013) Game theoretic analysis of maximum cooperative purchasing situations. Nav Res Log 16:607–624

    Article  Google Scholar 

  • Shapley LS (1971) Cores of convex games. Int J Game Theory 1:11–26

    Article  Google Scholar 

  • Telser LG (1994) The usefulness of core theory in economics. J Econ Perspect 8:151–164

    Article  Google Scholar 

  • Tykvová T (2018) Venture capital and private equity financing: an overview of recent literature and an agenda for future research. J Bus Econ 88:325–362

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from research Grant ECO2017-86481-P (Spanish Ministry of Science and Innovation, AEI and FEDER, UE) and 2017SGR778 (Government of Catalonia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Maria Izquierdo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Given a co-investment problem \((N,f,\omega )\), \(\omega '\in {\mathbb {R}}^N\), \(\omega '\ge \omega \), \(\omega '\ne \omega \) and vector z defined in (7) we have

Claim

For any \(R\in {\mathscr {D}}_{S^*}\) and for any pair of coalitions \(S_1\) and \(S_2\) such that \(\varnothing \ne S_1\subseteq S_2\subseteq N\setminus R\) we have

$$\begin{aligned} \frac{f(\omega '_{S_1\cup Q})-z_Q}{\omega '_{S_1}}\le \frac{f(\omega '_{S_2\cup Q})-z_Q}{\omega '_{S_2}}, \text{ for } \text{ any } Q\subseteq R. \end{aligned}$$
(14)

Proof

The proof will be argued by induction on the cardinality of the size of coalition R. If \(|R|=1\), i.e. \(R=\{j_1\}\in {\mathscr {D}}_{S^*}\) there are just two cases. If \(Q=\varnothing \) then (14) is

$$\begin{aligned} \frac{f(\omega '_{S_1})}{\omega '_{S_1}}\le \frac{f(\omega '_{S_2})}{\omega '_{S_2}} \end{aligned}$$

and it follows just by (1). If \(Q=\{j_1\}\) then (14) is

$$\begin{aligned} \frac{f(\omega '_{S_1\cup \{j_1\}})-z_{j_1}}{\omega '_{S_1}}\le \frac{f(\omega '_{S_2\cup \{j_1\}})-z_{j_1}}{\omega '_{S_2}}. \end{aligned}$$

To check this last inequality, notice that

$$\begin{aligned} \begin{array}{l}\displaystyle \frac{f(\omega '_{S_1\cup \{j_1\}})-z_{j_1}}{\omega '_{S_1}} = \frac{\displaystyle \frac{f(\omega '_{S_1\cup \{j_1\}})}{\omega '_{S_1\cup \{j_1\}}}\cdot \omega '_{S_1}+\frac{f(\omega '_{S_1\cup \{j_1\}})}{\omega '_{S_1\cup \{j_1\}}}\cdot \omega '_{j_1} \displaystyle -z_{j_1}}{\displaystyle \omega '_{S_1}}\\ \quad = \displaystyle \frac{f(\omega '_{S_1\cup \{j_1\}})}{\omega '_{S_1\cup \{j_1\}}}+\displaystyle \frac{\displaystyle \frac{f(\omega '_{S_1\cup \{j_1\}})}{\omega '_{S_1\cup \{j_1\}}}\cdot \omega '_{j_1} \displaystyle -z_{j_1}}{\displaystyle \omega '_{S_1}} \le \displaystyle \frac{f(\omega '_{S_2\cup \{j_1\}})}{\omega '_{S_2\cup \{j_1\}}}+\displaystyle \frac{\displaystyle \frac{f(\omega '_{S_2\cup \{j_1\}})}{\omega '_{S_2\cup \{j_1\}}}\cdot \omega '_{j_1} \displaystyle -z_{j_1}}{\displaystyle \omega '_{S_1}} \\ \quad \le \displaystyle \frac{f(\omega '_{S_2\cup \{j_1\}})}{\omega '_{S_2\cup \{j_1\}}}+\displaystyle \frac{\displaystyle \frac{f(\omega '_{S_2\cup \{j_1\}})}{\omega '_{S_2\cup \{j_1\}}}\cdot \omega '_{j_1} \displaystyle -z_{j_1}}{\displaystyle \omega '_{S_2}} =\displaystyle \frac{f(\omega '_{S_2\cup \{j_1\}})-z_{j_1}}{\omega '_{S_2}}, \end{array} \end{aligned}$$

where the first inequality follows by (1) and the second one since, by definition of the set \({\mathscr {D}}_{S^*}\), we have \(z_{j_1}\ge \displaystyle \frac{f(\omega '_N)}{\omega '_N}\cdot \omega '_{j_1}\ge \frac{f(\omega '_{S_2\cup \{j_1\}})}{\omega '_{S_2\cup \{j_1\}}}\cdot \omega '_{j_1}\), and thus \(\displaystyle \frac{f(\omega '_{S_2\cup \{j_1\}})}{\omega '_{S_2\cup \{j_1\}}}\cdot \omega '_{j_1} \displaystyle -z_{j_1}\le 0\).

Suppose now that for any \({\widetilde{R}}\in {\mathscr {D}}_{S^*}\) such that \(1\le |{\widetilde{R}}|\le k\) and all \(Q \subseteq {\widetilde{R}}\) we have

$$\begin{aligned} \frac{f(\omega '_{{\widetilde{S}}_1\cup Q})-z_Q}{\omega '_{{\widetilde{S}}_1}}\le \frac{f(\omega '_{{\widetilde{S}}_2\cup Q})-z_Q}{\omega '_{{\widetilde{S}}_2}}, \end{aligned}$$
(15)

for all \(\varnothing \ne {\widetilde{S}}_1\subseteq {\widetilde{S}}_2\subseteq N\setminus {\widetilde{R}}\). Let \(R\in {\mathscr {D}}_{S^*}\), with \(|R|=k+1\), that is \(R=\{j_1,j_2,\ldots ,j_k, j_{k+1}\}\) where \(\theta =(j_1,j_2,\ldots ,j_k, j_{k+1})\) is the ordering in which the inequalities required to be in the set \({\mathscr {D}}_{S^*}\) are satisfied. Let us remark that the coalition \(R\setminus \{j_{k+1}\}\) is also in \({\mathscr {D}}_{S^*}\).

We have to prove (14) for all coalitions \(\varnothing \ne S_1\subseteq S_2\subseteq N\setminus R\) and coalition \(Q\subseteq R=\{j_1,j_2,\ldots ,j_k,j_{k+1}\}\). To this aim consider two cases:

Case 1 Coalition \(Q\subseteq R\) satisfies \(j_{k+1}\not \in Q\). In this case (14) holds simply by applying (15) to \({\widetilde{R}}=R\setminus \{j_{k+1}\}\) and taking \({\widetilde{S}}_1=S_1\) and \({\widetilde{S}}_2=S_2\).

Case 2 Coalition \(Q\subseteq R\) satisfies \(j_{k+1}\in Q\). Taking into account \(\varnothing \ne S_1\subseteq S_2\subseteq N\setminus R\) we have,

$$\begin{aligned} \begin{array}{l}\displaystyle \frac{f(\omega '_{S_1\cup Q})-z_Q}{\omega '_{S_1}}\\ \quad = \frac{\displaystyle \frac{f(\omega '_{S_1\cup Q})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_1\cup \{j_{k+1}\}}}\cdot \omega '_{S_1}+\frac{f(\omega '_{S_1\cup Q})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_1\cup \{j_{k+1}\}}}\cdot \omega '_{j_{k+1}} \displaystyle -z_{j_{k+1}}}{\displaystyle \omega '_{S_1}}\\ \quad = \displaystyle \frac{f(\omega '_{S_1\cup Q})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_1\cup \{j_{k+1}\}}}+\displaystyle \frac{\displaystyle \frac{f(\omega '_{S_1\cup Q})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_1\cup \{j_{k+1}\}}}\cdot \omega '_{j_{k+1}} \displaystyle -z_{j_{k+1}}}{\displaystyle \omega '_{S_1}} \\ \quad = \displaystyle \frac{f(\omega '_{(S_1\cup \{j_{k+1}\})\cup (Q\setminus \{j_{k+1}\})})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_1\cup \{j_{k+1}\}}}+\\ \quad \displaystyle \frac{\displaystyle \frac{f(\omega '_{(S_1\cup \{j_{k+1}\})\cup (Q\setminus \{j_{k+1}\})})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_1\cup \{j_{k+1}\}}}\cdot \omega '_{j_{k+1}} \displaystyle -z_{j_{k+1}}}{\displaystyle \omega '_{S_1}} \\ \quad \le \displaystyle \frac{f(\omega '_{(S_2\cup \{j_{k+1}\})\cup (Q\setminus \{j_{k+1}\})})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_2\cup \{j_{k+1}\}}}+\\ \quad \displaystyle \frac{\displaystyle \frac{f(\omega '_{(S_2\cup \{j_{k+1}\})\cup (Q\setminus \{j_{k+1}\})})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_2\cup \{j_{k+1}\}}}\cdot \omega '_{j_{k+1}} \displaystyle -z_{j_{k+1}}}{\displaystyle \omega '_{S_1}} \\ \quad \le \displaystyle \frac{f(\omega '_{S_2\cup Q})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_2\cup \{j_{k+1}\}}}+\displaystyle \frac{\displaystyle \frac{f(\omega '_{S_2 \cup Q})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_2\cup \{j_{k+1}\}}}\cdot \omega '_{j_{k+1}} \displaystyle -z_{j_{k+1}}}{\displaystyle \omega '_{S_2}} = \displaystyle \frac{f(\omega '_{S_2\cup Q})-z_Q}{\omega '_{S_2}}, \end{array} \end{aligned}$$

where the first inequality comes from (15) applied to \({\widetilde{R}}=\{j_1,\ldots , j_k\}\), \({\widetilde{S}}_1=S_1\cup \{j_{k+1}\}\) and \({\widetilde{S}}_2=S_2\cup \{j_{k+1}\}\) and the second inequality follows since it can be proved that

$$\begin{aligned} \frac{f(\omega '_{S_2\cup Q })-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_2\cup \{j_{k+1}\}}}\cdot \omega '_{j_{k+1}}-z_{j_{k+1}}\le 0. \end{aligned}$$

Indeed, being \(R=\{j_1,\ldots , j_k,j_{k+1}\}\in {\mathscr {D}}_{S^*}\), this inequality follows since

$$\begin{aligned} \begin{array}{ll} z_{j_{k+1}}&{}\ge \displaystyle \max _{{\widetilde{Q}}\subseteq \{j_1,\ldots ,j_k\}}\left\{ \displaystyle \frac{f(\omega '_{(N\setminus \{j_1,\ldots ,j_k\})\cup {\widetilde{Q}}})-z_{{\widetilde{Q}}}}{\omega '_{N\setminus \{j_1,\ldots ,j_k\}}}\right\} \cdot \omega '_{j_{k+1}}\\ &{}\ge \displaystyle \frac{f(\omega '_{(N\setminus \{j_1,\ldots ,j_k\})\cup (Q\setminus \{j_{k+1}\})})-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{N\setminus \{j_1,\ldots ,j_k\}}}\cdot \omega '_{j_{k+1}}\\ &{}\ge \displaystyle \frac{f(\omega '_{(S_2\cup \{j_{k+1}\})\cup (Q\setminus \{j_{k+1}\}) })-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_2\cup \{j_{k+1}\}}}\cdot \omega '_{j_{k+1}}, \\ &{}\ge \displaystyle \frac{f(\omega '_{S_2\cup Q })-z_{Q\setminus \{j_{k+1}\}}}{\omega '_{S_2\cup \{j_{k+1}\}}}\cdot \omega '_{j_{k+1}}, \\ \end{array} \end{aligned}$$

where the third inequality follows from (15) by taking \({\widetilde{R}}=R\setminus \{j_{k+1}\}=\{j_1,\ldots , j_k\}\), \({\widetilde{S}}_1=S_2\cup \{j_{k+1}\}\) and \({\widetilde{S}}_2=N\setminus \{j_1,\ldots ,j_k\}\). Therefore, the claim is proved.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izquierdo, J.M., Rafels, C. Core Allocations in Co-investment Problems. Group Decis Negot 29, 1157–1180 (2020). https://doi.org/10.1007/s10726-020-09700-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10726-020-09700-3

Keywords

Navigation