Skip to main content
Log in

Stackelberg risk preference design

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Risk measures are commonly used to capture the risk preferences of decision-makers (DMs). The decisions of DMs can be nudged or manipulated when their risk preferences are influenced by factors such as the availability of information about the uncertainties. This work proposes a Stackelberg risk preference design (STRIPE) problem to capture a designer’s incentive to influence DMs’ risk preferences. STRIPE consists of two levels. In the lower level, individual DMs in a population, known as the followers, respond to uncertainties according to their risk preference types. In the upper level, the leader influences the distribution of the types to induce targeted decisions and steers the follower’s preferences to it. Our analysis centers around the solution concept of approximate Stackelberg equilibrium that yields suboptimal behaviors of the players. We show the existence of the approximate Stackelberg equilibrium. The primitive risk perception gap, defined as the Wasserstein distance between the original and the target type distributions, is important in estimating the optimal design cost. We connect the leader’s optimality compromise on the cost with her ambiguity tolerance on the follower’s approximate solutions leveraging Lipschitzian properties of the lower level solution mapping. To obtain the Stackelberg equilibrium, we reformulate STRIPE into a single-level optimization problem using the spectral representations of law-invariant coherent risk measures. We create a data-driven approach for computation and study its performance guarantees. We apply STRIPE to contract design problems under approximate incentive compatibility. Moreover, we connect STRIPE with meta-learning problems and derive adaptation performance estimates of the meta-parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Acerbi, C.: Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Finance 26(7), 1505–1518 (2002)

    Article  Google Scholar 

  2. Acerbi, C., Simonetti, P.: Portfolio optimization with spectral measures of risk. arXiv:cond-mat/0203607 (2002)

  3. Acerbi, C., Szekely, B.: Back-testing expected shortfall. Risk 27(11), 76–81 (2014)

    Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer, Berlin (2008)

    Google Scholar 

  5. Anscombe, F.J., Aumann, R.J., et al.: A definition of subjective probability. Ann. Math. Stat. 34(1), 199–205 (1963)

    Article  MathSciNet  Google Scholar 

  6. Artacho, F.J.A., Mordukhovich, B.S.: Metric regularity and Lipschitzian stability of parametric variational systems. Nonlinear Anal. Theory Methods Appl. 72(3–4), 1149–1170 (2010)

    Article  MathSciNet  Google Scholar 

  7. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  8. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Springer, Berlin (2009)

    Book  Google Scholar 

  9. Balseiro, S.R., Besbes, O., Castro, F.: Mechanism design under approximate incentive compatibility. Oper. Res. 72, 355–372 (2022)

    Article  MathSciNet  Google Scholar 

  10. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Birkhäuser, Basel (1982)

    Book  Google Scholar 

  11. Barseghyan, L., Prince, J., Teitelbaum, J.C.: Are risk preferences stable across contexts? Evidence from insurance data. Am. Econ. Rev. 101(2), 591–631 (2011)

    Article  Google Scholar 

  12. Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  13. Bennett, K.P., Hu, J., Ji, X., Kunapuli, G., Pang, J.S.: Model selection via bilevel optimization. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 1922–1929. IEEE (2006)

  14. Bensalem, S., Santibáñez, N.H., Kazi-Tani, N.: Prevention efforts, insurance demand and price incentives under coherent risk measures. Insur. Math. Econ. 93, 369–386 (2020)

    Article  MathSciNet  Google Scholar 

  15. Bertsimas, D., Brown, D.B.: Constructing uncertainty sets for robust linear optimization. Oper. Res. 57(6), 1483–1495 (2009)

    Article  MathSciNet  Google Scholar 

  16. Bonnans, J.F., Ioffe, A.D.: Quadratic growth and stability in convex programming problems with multiple solutions. J. Convex Anal. 2(1–2), 41–57 (1995)

    MathSciNet  Google Scholar 

  17. Burtscheidt, J., Claus, M., Dempe, S.: Risk-averse models in bilevel stochastic linear programming. SIAM J. Optim. 30(1), 377–406 (2020)

    Article  MathSciNet  Google Scholar 

  18. Chade, H., De Serio, V.N.V.: Risk aversion, moral hazard, and the principal’s loss. Econ. Theor. 20(3), 637–644 (2002)

    Article  Google Scholar 

  19. Chen, T., Sun, Y., Xiao, Q., Yin, W.: A single-timescale method for stochastic bilevel optimization. In: International Conference on Artificial Intelligence and Statistics, pp. 2466–2488. PMLR (2022)

  20. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  21. Delage, E., Li, J.Y.M.: Minimizing risk exposure when the choice of a risk measure is ambiguous. Manag. Sci. 64(1), 327–344 (2018)

    Article  Google Scholar 

  22. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  Google Scholar 

  23. Dempe, S.: Foundations of Bilevel Programming. Springer, Berlin (2002)

    Google Scholar 

  24. Dempe, S., Zemkoho, A.B.: The bilevel programming problem: reformulations, constraint qualifications and optimality conditions. Math. Program. 138(1), 447–473 (2013)

    Article  MathSciNet  Google Scholar 

  25. Denneberg, D.: Premium calculation: why standard deviation should be replaced by absolute deviation1. ASTIN Bull. J. IAA 20(2), 181–190 (1990)

    Article  Google Scholar 

  26. Dentcheva, D., Ruszczynski, A.: Optimization with stochastic dominance constraints. SIAM J. Optim. 14(2), 548–566 (2003)

    Article  MathSciNet  Google Scholar 

  27. Dohmen, T., Lehmann, H., Pignatti, N.: Time-varying individual risk attitudes over the great recession: a comparison of Germany and Ukraine. J. Comp. Econ. 44(1), 182–200 (2016)

    Article  Google Scholar 

  28. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

  29. Föllmer, H., Schied, A.: Stochastic Finance. de Gruyter, Berlin (2016)

    Book  Google Scholar 

  30. Föllmer, H., Weber, S.: The axiomatic approach to risk measures for capital determination. Annu. Rev. Financ. Econ. 7, 301–337 (2015)

    Article  Google Scholar 

  31. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. In: Gilboa, I. (ed.) Uncertainty in Economic Theory, pp. 141–151. Routledge, London (2004)

    Chapter  Google Scholar 

  32. Gneiting, T.: Making and evaluating point forecasts. J. Am. Stat. Assoc. 106(494), 746–762 (2011)

    Article  MathSciNet  Google Scholar 

  33. Guo, S., Xu, H.: Robust spectral risk optimization when the subjective risk aversion is ambiguous: a moment-type approach. Math. Program. 194, 305–340 (2021)

    Article  MathSciNet  Google Scholar 

  34. Haezendonck, J., Goovaerts, M.: A new premium calculation principle based on Orlicz norms. Insur. Math. Econ. 1(1), 41–53 (1982)

    Article  MathSciNet  Google Scholar 

  35. Hanaoka, C., Shigeoka, H., Watanabe, Y.: Do risk preferences change? Evidence from the great east japan earthquake. Am. Econ. J. Appl. Econ. 10(2), 298–330 (2018)

    Article  Google Scholar 

  36. Hanin, L.G.: Kantorovich–Rubinstein norm and its application in the theory of Lipschitz spaces. Proc. Am. Math. Soc. 115(2), 345–352 (1992)

    Article  MathSciNet  Google Scholar 

  37. Johnson, J.: Lipschitz spaces. Pac. J. Math. 51(1), 177–186 (1974)

    Article  MathSciNet  Google Scholar 

  38. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. In: Handbook of the Fundamentals of Financial Decision Making: Part I, pp. 99–127. World Scientific (2013)

  39. Kantorovich, L.V., Rubinshtein, G.S.: On a functional space and certain extremum problems. In: Doklady Akademii Nauk, vol. 115, pp. 1058–1061. Russian Academy of Sciences (1957)

  40. Karni, E.: A definition of subjective probabilities with state-dependent preferences. Econom. J. Econom. Soc. 61, 187–198 (1993)

    MathSciNet  Google Scholar 

  41. Kien, B.: On the lower semicontinuity of optimal solution sets. Optimization 54(2), 123–130 (2005)

    Article  MathSciNet  Google Scholar 

  42. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications, vol. 60. Springer, Berlin (2006)

    Google Scholar 

  43. Kuhn, D., Esfahani, P.M., Nguyen, V.A., Shafieezadeh-Abadeh, S.: Wasserstein distributionally robust optimization: theory and applications in machine learning. In: Operations Research & Management Science in the Age of Analytics, pp. 130–166. Informs (2019)

  44. Kurdila, A.J., Zabarankin, M.: Convex Functional Analysis. Springer, Berlin (2006)

    Google Scholar 

  45. Kusuoka, S.: On law invariant coherent risk measures. In: Maruyama, T. (ed.) Advances in Mathematical Economics, pp. 83–95. Springer, Berlin (2001)

    Chapter  Google Scholar 

  46. Levin, I.P., Hart, S.S., Weller, J.A., Harshman, L.A.: Stability of choices in a risky decision-making task: a 3-year longitudinal study with children and adults. J. Behav. Decis. Mak. 20(3), 241–252 (2007)

    Article  Google Scholar 

  47. Levy, H.: Stochastic dominance and expected utility: survey and analysis. Manag. Sci. 38(4), 555–593 (1992)

    Article  Google Scholar 

  48. Li, J.Y.M.: Inverse optimization of convex risk functions. Manag. Sci. 67(11), 7113–7141 (2021)

    Article  Google Scholar 

  49. Li, M., Tong, X., Xu, H.: Randomization of spectral risk measure and distributional robustness. arXiv preprint arXiv:2212.08871 (2022)

  50. Lin, G.H., Xu, M., Jane, J.Y.: On solving simple bilevel programs with a nonconvex lower level program. Math. Program. 144(1), 277–305 (2014)

    Article  MathSciNet  Google Scholar 

  51. Liu, S., Zhu, Q.: Robust and stochastic optimization with a hybrid coherent risk measure with an application to supervised learning. IEEE Control Syst. Lett. 5(3), 965–970 (2020)

    Article  MathSciNet  Google Scholar 

  52. Liu, S., Zhu, Q.: Mitigating moral hazard in cyber insurance using risk preference design. arXiv preprint arXiv:2203.12001 (2022)

  53. Liu, S., Zhu, Q.: On the role of risk perceptions in cyber insurance contracts. In: 2022 IEEE Conference on Communications and Network Security (CNS), pp. 377–382. IEEE (2022)

  54. Liu, Y., Xu, H.: Stability analysis of stochastic programs with second order dominance constraints. Math. Program. 142(1), 435–460 (2013)

    Article  MathSciNet  Google Scholar 

  55. Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74(6), 1447–1498 (2006)

    Article  MathSciNet  Google Scholar 

  56. Meyer, D.J., Meyer, J.: Relative risk aversion: what do we know? J. Risk Uncertain. 31(3), 243–262 (2005)

    Article  Google Scholar 

  57. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330. Springer, Berlin (2006)

    Book  Google Scholar 

  58. Mordukhovich, B.S.: Failure of metric regularity for major classes of variational systems. Nonlinear Anal. Theory Methods Appl. 69(3), 918–924 (2008)

    Article  MathSciNet  Google Scholar 

  59. Mordukhovich, B.S., Wang, B.: Restrictive metric regularity and generalized differential calculus in Banach spaces. Int. J. Math. Math. Sci. 2004(50), 2653–2680 (2004)

    Article  MathSciNet  Google Scholar 

  60. Pichler, A.: A quantitative comparison of risk measures. Ann. Oper. Res. 254(1), 251–275 (2017)

    Article  MathSciNet  Google Scholar 

  61. Pichler, A., Shapiro, A.: Minimal representation of insurance prices. Insur. Math. Econ. 62, 184–193 (2015)

    Article  MathSciNet  Google Scholar 

  62. Pichler, A., Xu, H.: Quantitative stability analysis for minimax distributionally robust risk optimization. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1347-4

    Article  Google Scholar 

  63. Rockafellar, R.T., Uryasev, S., et al.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)

    Article  Google Scholar 

  64. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Berlin (2009)

    Google Scholar 

  65. Römisch, W.: Stability of stochastic programming problems. Handb. Oper. Res. Manag. Sci. 10, 483–554 (2003)

    MathSciNet  Google Scholar 

  66. Ruszczyński, A., Shapiro, A.: Optimization of convex risk functions. Math. Oper. Res. 31(3), 433–452 (2006)

    Article  MathSciNet  Google Scholar 

  67. Saghai, Y.: Salvaging the concept of nudge. J. Med. Ethics 39(8), 487–493 (2013)

    Article  Google Scholar 

  68. Schied, A., Föllmer, H., Weber, S.: Robust preferences and robust portfolio choice. Handb. Numer. Anal. 15, 29–87 (2009)

    Google Scholar 

  69. Schildberg-Hörisch, H.: Are risk preferences stable? J. Econ. Perspect. 32(2), 135–54 (2018)

    Article  Google Scholar 

  70. Shapiro, A.: Quantitative stability in stochastic programming. Math. Program. 67(1), 99–108 (1994)

    Article  MathSciNet  Google Scholar 

  71. Shapiro, A.: On Kusuoka representation of law invariant risk measures. Math. Oper. Res. 38(1), 142–152 (2013)

    Article  MathSciNet  Google Scholar 

  72. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2021)

    Book  Google Scholar 

  73. Slovic, P.: The construction of preference. Am. Psychol. 50(5), 364 (1995)

    Article  Google Scholar 

  74. Slovic, P., Peters, E.: Risk perception and affect. Curr. Dir. Psychol. Sci. 15(6), 322–325 (2006)

    Article  Google Scholar 

  75. Stole, L.: Lectures on the theory of contracts and organizations. Unpublished monograph (2001)

  76. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5(4), 297–323 (1992)

    Article  Google Scholar 

  77. Vanschoren, J.: Meta-learning: a survey. arXiv preprint arXiv:1810.03548 (2018)

  78. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Berlin (2009)

    Google Scholar 

  79. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (2007)

    Google Scholar 

  80. Wang, S.: Premium calculation by transforming the layer premium density. ASTIN Bull. J. IAA 26(1), 71–92 (1996)

    Article  Google Scholar 

  81. Wang, S.S., Young, V.R.: Ordering risks: Expected utility theory versus Yaari’s dual theory of risk. Insur. Math. Econ. 22(2), 145–161 (1998)

    Article  MathSciNet  Google Scholar 

  82. Wang, W., Xu, H.: Robust spectral risk optimization when information on risk spectrum is incomplete. SIAM J. Optim. 30(4), 3198–3229 (2020)

    Article  MathSciNet  Google Scholar 

  83. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)

    Article  MathSciNet  Google Scholar 

  84. Yaari, M.E.: The dual theory of choice under risk. Econom. J. Econom. Soc. 55, 95–115 (1987)

    MathSciNet  Google Scholar 

  85. Yassin, A., AlOmari, M., Al-Azzam, S., Karasneh, R., Abu-Ismail, L., Soudah, O.: Impact of social media on public fear, adoption of precautionary behaviors, and compliance with health regulations during Covid-19 pandemic. Int. J. Environ. Health Res. 32(9), 2027–2039 (2022)

    Article  Google Scholar 

  86. Ye, J., Zhu, D., Zhu, Q.J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7(2), 481–507 (1997)

    Article  MathSciNet  Google Scholar 

  87. Ye, J.J., Yuan, X., Zeng, S., Zhang, J.: Difference of convex algorithms for bilevel programs with applications in hyperparameter selection. arXiv preprint arXiv:2102.09006 (2021)

  88. Yuen, K.F., Wang, X., Ma, F., Li, K.X.: The psychological causes of panic buying following a health crisis. Int. J. Environ. Res. Public Health 17(10), 3513 (2020)

    Article  Google Scholar 

  89. Zhao, J.: The lower semicontinuity of optimal solution sets. J. Math. Anal. Appl. 207(1), 240–254 (1997)

    Article  MathSciNet  Google Scholar 

  90. Zheng, X., Li, W., Wong, S.W., Lin, H.C.: Social media and e-cigarette use among us youth: longitudinal evidence on the role of online advertisement exposure and risk perception. Addict. Behav. 119, 106916 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutian Liu.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by ECCS-1847056, BCS-2122060, and TIP-2226232 from the National Science Foundation (NSF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhu, Q. Stackelberg risk preference design. Math. Program. (2024). https://doi.org/10.1007/s10107-024-02083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10107-024-02083-2

Keywords

Mathematics Subject Classification

Navigation